
Improving Utilization of Infrastructure Clouds

Paul Marshall
Department of Computer Science
University of Colorado at Boulder

Boulder, CO USA
paul.marshall@colorado.edu

Kate Keahey1,2 and Tim Freeman1,2
1Computation Institute, University of Chicago

2Argonne National Laboratory
Chicago, IL USA

keahey@mcs.anl.gov and tfreeman@mcs.anl.gov

Abstract— A key advantage of Infrastructure-as-a-Service (IaaS)
clouds is providing users on-demand access to resources.
However, to provide on-demand access, cloud providers must
either significantly overprovision their infrastructure (and pay a
high price for operating resources with low utilization) or reject a
large proportion of user requests (in which case the access is no
longer on-demand). At the same time, not all users require truly
on-demand access to resources. Many applications and
workflows are designed for recoverable systems where
interruptions in service are expected. For instance, many
scientists utilize High Throughput Computing (HTC)-enabled
resources, such as Condor, where jobs are dispatched to available
resources and terminated when the resource is no longer
available.

We propose a cloud infrastructure that combines on-demand
allocation of resources with opportunistic provisioning of cycles
from idle cloud nodes to other processes by deploying backfill
Virtual Machines (VMs). For demonstration and experimental
evaluation, we extend the Nimbus cloud computing toolkit to
deploy backfill VMs on idle cloud nodes for processing an HTC
workload. Initial tests show an increase in IaaS cloud utilization
from 37.5% to 100% during a portion of the evaluation trace but
only 6.39% overhead cost for processing the HTC workload.

We demonstrate that a shared infrastructure between IaaS cloud
providers and an HTC job management system can be highly
beneficial to both the IaaS cloud provider and HTC users by
increasing the utilization of the cloud infrastructure (thereby
decreasing the overall cost) and contributing cycles that would
otherwise be idle to processing HTC jobs.

Cloud computing, Infrastructure-as-a-Service, High Throughput
Computing

I. INTRODUCTION
In the recent years, Infrastructure-as-a-Service (IaaS) cloud

computing [14] has emerged as an attractive alternative to the
acquisition and management of physical resources. The on-
demand provisioning it supports allows users to elastically
expand and contract the resource base available to them based
on an immediate need – a pattern that enables a quick
turnaround time when dealing with emergencies, working
towards deadlines, or growing an institutional resource base.
This pattern makes it convenient for institutions to configure
private clouds that allow their users a seamless or near
seamless transition to community or commercial clouds
supporting compatible VM images and cloud interfaces. Such
private clouds are typically configured using open source IaaS
implementations such as Nimbus [16] or Eucalyptus [17].

However, such private cloud installations also face a
utilization problem. In order to ensure on-demand availability a
provider needs to overprovision: keep a large proportion of
nodes idle so that they can be used to satisfy an on-demand
request, which could come at any time. The need to keep all
these nodes idle leads to low utilization. The only way to
improve it is to keep fewer nodes idle. But this means
potentially rejecting a higher proportion of requests – to a point
at which a provider no longer provides on-demand computing.
This situation is particularly hard to accept in the world of
scientific computing where the use of batch schedulers
typically ensures high utilization [25] and thus much better
resource amortization. Thus, potential low utilization
constitutes a significant potential obstacle to the adoption of
cloud computing in the scientific world.

At the same time, while the on-demand capabilities of IaaS
clouds are ideal for many scientific use cases, there are others
that do not necessarily require on-demand access to resources.
Many systems, specifically volunteer computing systems such
as SETI@Home [4] and Folding@Home [11], are capable of
taking advantage of resources available opportunistically and
are also preemptible, i.e., designed as failure resilient systems
where interruptions in service can be handled without
compromising the integrity of computation. One example in the
scientific community is the use of high throughput computing
(HTC), as implemented by e.g., the Condor [24] system where
users employ HTC-enabled resources to process their

Figure 1. Example Backfill Deployment

!"#$"%&'""(&

)*+,-.&!("-$&

/*01&2&

/*01&3&
4"%5.6781&/1%9*81&

:;;&)"$1.&

;7.01%&

4"%51%.&

4"%51%.&
&<=#797*(7,(1>&

:;;&?&

=.1%&
:;&

:;;&@&

=.1%&
:;&

=.1%&
:;&

:;;&A&

=.1%&
:;&

:;;&B&

2785C((&
:;&

D#*E701&"%&F1%+*#701&
4"%5.6781.&

/-,+*0&G",&<B&F7.5.>&

2785C((&
:;&

H*.6708I&F7.5.&

H*.6708I&F7.5&

2785C((&
:;&

G"*#&'""(&

D#*E701&"%&
F1%+*#701&
4"%5.6781.&

J7-#8I&2785C((&
)"$1.&K#L$1+7#$&

=.1%&

MF!&=.1%&

workloads. These applications are designed to “scavenge”
unused resource cycles: for example, when a user stops using
their desktop, the screensaver might use the resource to run a
volunteer computing program. The job may then be preempted
when the resource becomes unavailable (i.e., the user is using it
again), in which case the job is typically requeued and
rescheduled on another available resource by the HTC system
that manages it.

We propose a cloud infrastructure that combines on-
demand allocation of resources with opportunistic provisioning
of cycles from idle cloud nodes to other processes, such as
HTC, by deploying backfill VMs. Backfill VMs are deployed
on idle cloud nodes and can be configured to perform any
desired function. A backfill VM is terminated when the
resource is needed to satisfy an on-demand request. If we can
ensure that the computation occurring in backfill VMs is
resilient to such sudden termination, the time that would
otherwise be idle can be profitably spent. Furthermore, cycles
via backfill VMs can be provided to users at a lower cost than
on-demand VMs because of the cloud providers ability to
terminate the instances when needed, thus for users that work
with HTC resources and possibly expect such behavior already,
backfill VMs would provide a less expensive option when
moving their workloads to the cloud. Overall, this design
achieves two goals: for cloud providers, it offers a path to
higher utilized clouds; for cloud users, it offers another type of
resource lease, potentially cheaper than on-demand, non-
preemptible resource.

In our work we extend the Nimbus toolkit [16] to deploy
backfill VMs on idle Virtual Machine Monitor (VMM) nodes
[21]. Nimbus is an open source toolkit for deploying IaaS
clouds, designed with extensibility in mind, which makes it
particularly suitable for projects such as the one described here.
To illustrate how the system works, we configure the backfill
VMs as Condor workers that integrate with a Condor pool to
process HTC jobs. We evaluate the ability of the system to
increase utilization of the IaaS cloud infrastructure without
sacrificing the ability of the IaaS cloud to provision resources
on-demand. We also evaluate the ability of the system to
contribute cycles that would otherwise be idle to processing
HTC jobs.

We find that during certain portions of our experimental
evaluation backfill VMs contribute to an increase in the
utilization of the IaaS cloud infrastructure from 37.5% to 100%
with only 6.39% overhead cost for processing the HTC
workload. Additionally, backfill VMs process the entire
Condor workload using what would have otherwise been idle
cycles.

The remainder of the paper is organized as follows. In
Section II we examine the general approach of deploying
backfill VMs on idle IaaS cloud nodes, in Section III we
discuss our specific extensions to the Nimbus toolkit in order to
deploy backfill VMs on idle cloud nodes. In Section IV we
evaluate our implementation, in Section V we cover the related
work in the field, and in Section VI we discuss our directions
for future work. We conclude in Section VII.

II. APPROACH
A compute infrastructure cloud operates by allowing a user

to make leases against its pool of resources; an infrastructure
lease makes a resource available to the user based on set of
lease terms defining the availability, capacity and general
conditions of a lease. In our system we focus on investigating
two types of leases:

• On-demand, non-preemptible and flexible leases give a
user access to a resource within interactive time of
making the request and make the resource available for
an agreed-upon period of time. The user can deploy
any VM compatible with the system.

• Opportunistic, preemptible and pre-set leases give a
user access to a resource at an indeterminate time and
make the resource available to the user for an
indeterminate amount of time. Further, this resource is
pre-defined for the user by the cloud administrator, i.e.
the user cannot provide his or her own VM.

In the rest of the paper we will be referring to them as on-
demand leases and preemptible leases respectively. We define
the following roles in our system. An on-demand user is a user
that requests on-demand VMs/leases from an IaaS cloud. An
on-demand VM is an IaaS VM that has been provisioned via on
on-demand lease for a specific user. A backfill VM is a VM that
has been deployed automatically by the IaaS cloud manager on
an idle IaaS node using a preemptible lease. An IaaS cloud
administrator is the person or persons responsible for
configuring and managing the IaaS cloud resource. An HTC
user is a user that submits jobs to an HTC queue and an HTC
worker is a system that process jobs from the HTC queue.

In the context of IaaS clouds, backfill VMs are generic
VMs deployed on IaaS resources using a preemptible lease that
may be configured to perform any function. Backfill VMs have
two major constraints. First, backfill VMs may be terminated
suddenly in order to free up space for the IaaS cloud manager
to service an on-demand lease. Second, because of the
unpredictable timing of on-demand leases (from any number of
unique users), a variable number of backfill VMs may be
available at any given time. Thus, we assume that applications
executing inside backfill VMs are designed to handle
environments that contain a variable number of workers that
may join or leave the system at any time.

Certain applications are not well suited for these volatile
environments, for example, parallel applications that require all
processes to be present for the duration of the application’s
execution and lack checkpoint/restart capabilities. An example
of a system that is well-suited for backfill VMs are High
Throughput Computing (HTC) workloads [24]. HTC
workloads typically consist of a large number of jobs that
eventually need to be processed. An assumption of HTC
workloads is that they do not have an immediate deadline and
therefore do not need resources to be available at a particular
time. In addition, terminating individual HTC jobs in the
middle of execution and requeuing them for later execution is
an acceptable action as long as the system is eventually able to
process the workload.

This work further assumes that backfill VM images and
deployments are managed by the IaaS cloud administrator;
backfill VMs are not directly managed by remote cloud users.
This work also assumes that the HTC scheduler is not aware of
the IaaS cloud scheduler details and vice versa. Thus, the
scheduling of HTC jobs on HTC workers (in backfill VMs) is
separate from the launching and terminating of user VMs on
the IaaS cloud.

A. Architecture
Figure 1 is a simple example deployment consisting of an

IaaS Nimbus cloud using backfill VMs to run Condor HTC
jobs in order to increase cloud infrastructure utilization. In this
example the HTC user submits 3 individual tasks to the Condor
master, which is able to schedule 1 task immediately on a local
worker. However, because the remaining resources in site B’s
Condor pool are busy, Condor leverages the cycles provided by
site A’s backfill VMs to launch the other 2 tasks immediately.
Condor is an ideal candidate for such a deployment because of
its original design as a cycle-scavenger where idle desktop
machines execute jobs until the system’s user returns, after
which the job is either migrated to another system or
prematurely terminated and re-launched on another system. A
backfill deployment could be much more complex then the
example depicted in Figure 1. For instance, backfill VMs could
host a number of different backfill processes in addition to
Condor workers. The Condor workers could also be configured
to execute jobs from multiple Condor pools or sites instead of a
single pool, as shown in the figure.

IaaS cloud administrators must consider a variety of
different backfill configurations when deploying a backfill
solution on an IaaS cloud. The configuration is influenced by
the characteristics of the underlying physical IaaS resources,
the users of on-demand leases, and the users of preemptible
leases.

First, appropriate backfill applications and workflows
should be identified. These applications should accommodate
the constraints discussed previously, namely, they should be
able to utilize a variable number of nodes that may join or leave
the system at any time.

Second, if the IaaS Virtual Machine Monitor (VMM) nodes
have multiple cores, the IaaS cloud administrator must
determine the granularity with which to deploy backfill VMs.
One possible solution is to deploy a single backfill VM for
each core on a VMM node. This approach allows the IaaS
cloud manager to have fine-grained control over VM
deployment. For example, a node with 8 cores may be
comprised of 3 user VMs and 5 backfill VMs. However, the
disadvantage of this approach is the increased overhead
introduced by running additional VMs. An alternative solution
is to deploy a single backfill VM per VMM node, utilizing all
of the available cores in the backfill VM. This approach
reduces the virtualization overhead on the VMM node since
only a single backfill VM would be running, however, if the
cloud receives an on-demand user request for a single core it is
possible that the entire backfill VM will need to be terminated
to satisfy the on-demand request. This would leave the
additional VMM cores idle. Alternatively, the administrator
may wish to configure VM deployments based on allocation of

other resources, such as RAM, instead of (or in addition to)
CPU cores.

Third, the IaaS cloud administrator must determine the
approximate size of the backfill deployment, relative to the size
of the IaaS cloud. The administrator may allow the backfill
deployment to utilize all available nodes, however, the
administrator should consider the additional overhead required
to terminate backfill nodes in order to fulfill on-demand user
requests. Depending on the method used to terminate backfill
VMs (e.g. immediately trash the VM or cleanly shut it down)
and the number of backfill nodes being terminated, this
overhead may be significant. Consequently, IaaS cloud
administrators may configure backfill deployments to only
utilize a percentage of idle nodes or never allow backfill
deployments exceed a preset and static number of idle nodes.

Finally, the IaaS cloud administrator must determine the
backfill VM image deployment method. A fresh backfill VM
image could potentially be transferred from the VM image
repository for every backfill VM deployment (this process is
referred to as VM image propagation and is a typical pattern
that remote users expect for their deployments); however, this
introduces network contention and may slow the deployment of
on-demand user VMs. Another solution is to propagate the
backfill image to the node and cache it on the node, only
propagating it again if the image is updated or is removed from
the cache on the node. A third and simple solution is to
manually place the backfill image on each VMM node. Thus,
when a backfill VM boots, the image is already on the VMM
node and doesn’t require an image to be copied. This approach
reduces network contention (since it is only performed at select
times) and reduces launch time for the VM (since the backfill
image doesn’t need to be copied across the network). However,
any changes to the backfill image require that the IaaS cloud
administrator push it out to all VMM nodes.

B. Backfill Termination Policies
Backfill VMs are deployed on idle VMM nodes and

terminated whenever space is needed to service an on-demand
lease. However, the specific backfill VMs that are selected for
termination may impact the services, applications, or
workflows executing inside those VMs. For this reason, ideally
the backfill VM termination policies should consider the
applications and services running inside those VMs as well as
generic factors such as the need for clean shutdown, the ability
of an application to checkpoint/restart, etc. We discuss below
two simple policies that do not integrate such hints and
highlight their shortcomings.

One simple policy is to select the backfill VMs to terminate
at random. This approach ignores a number of factors that
could impact the services and applications running inside
backfill VMs. In particular, if the random backfill VM selected
for termination is the only backfill VM performing a useful
task then its work may be lost while idle backfill VMs continue
running.

Another policy is to select the backfill VM that has been
running for the least amount of time. This policy makes the
assumption that the backfill VMs running the longest also run
long-running jobs that have performed the most work and

therefore will lose the most work when terminated. The
intuition behind this policy is that a workload consisting
entirely of short running jobs (e.g. less then a few minutes) will
only be slightly impacted by the termination of any backfill
VM however, workloads that consist of long running jobs (or a
combination of long and short jobs) will be impacted more by
the termination of a VM that has been deployed for an
extended period of time. In this case all of the VM's work will
be lost unless the application supports checkpoint/restart or
migration. It is, however, possible that the backfill VM running
the longest will not always be the backfill VM with the most
work to lose; without tighter integration between the HTC job
manager and backfill termination policy this information is not
readily accessible.

More advanced backfill termination policies will require
“hints” from the IaaS scheduler in the form of a more complete
picture of cloud VM placement or integration with the
applications and services running inside of the backfill VMs.
For instance, if the backfill termination policy is aware of VM
placement on individual VMM nodes, it may be able to select
the fewest number of backfill VMs for termination in order to
satisfy an on-demand lease instead of blindly terminating
backfill VM’s until the request can be fulfilled. Alternatively, if
the backfill termination policy integrates with the applications
and services running inside of backfill VMs then it may be able
to identify which backfill VMs are performing useful tasks and
avoid terminating those VMs.

III. IMPLEMENTATION
We extend the open source Nimbus cloud computing

toolkit, which provides on-demand access to resources (in the
form of VMs), to support the deployment of preemptible leases
on idle cloud nodes, also referred to as backfill. We make a
number of simplifying assumptions in our current
implementation. First, the Nimbus administrator must
configure backfill. On-demand cloud users cannot elect to
deploy backfill VMs. Second, the current implementation is
capable of using only a single backfill VM image per VMM
node. Different backfill VM images could be deployed on
different VMM nodes, allowing multiple backfill VM images
to operate within the same IaaS cloud, each performing
different functions.

Unless the user specifies the max number of backfill
instances, backfill automatically attempts to deploy as many
backfill VMs as possible when it is enabled. Initially, we
support two termination policies for selecting backfill VMs for
termination in order to fulfill an on-demand lease. The first
policy simply selects a random backfill VM. The second
policy, and the default, terminates the most recently deployed
backfill VM in an attempt to minimize the amount of work
“lost” by the premature termination of backfill VMs. In future
work we hope to add additional backfill termination policies.

Finally, our backfill implementation cleanly shuts down the
backfill VM. Clean shutdown requires additional time over
trashing the VM, however, performing a clean shutdown
notifies services and applications running inside the backfill
VM that the VM will be terminated, allowing them to respond

appropriately (e.g. notify a central manager to reschedule
currently running jobs).

A. Backfill Configuration Options
Only the Nimbus cloud administrator can configure

Backfill. The main configuration options are specified in a
backfill.conf file on the Nimbus service node, allowing
administrators to easily configure and deploy backfill VMs on
Nimbus clouds. The backfill.conf options include:

• Backfill.disabled: This option specifies whether
backfill is enabled or disabled for the specific cloud.
The default is disabled.

• Max.instances: This option specifies the maximum
number of backfill VMs to launch (assuming there are
enough idle nodes). The default, 0, launches as many
as possible.

• Disk.image: This option specifies the full path to the
backfill VM image on the VMM nodes. This option
assumes that the backfill VM image has already been
pushed out to the VMM node, the Nimbus service
does not automatically transfer it. The image must be
in the same location on every VMM node.

• Memory.MB: This option specifies the amount of
memory (RAM) to use for backfill VMs. The default
is 64 MB.

• VCPUs: This option specifies the number of VCPUs
to use for backfill VMs. The default is 1.

• Duration.seconds: This option specifies the amount of
time (in seconds) backfill VMs should run before
being terminated (currently Nimbus doesn’t support
“infinite” length VM deployments). The default is one
week.

• Termination.policy: This option specifies the
termination policy to use when terminating backfill
VMs. The policies currently supported include a
“most recent” policy that first terminates backfill VMs
running for the least amount of time and an “any”
policy that simply terminates a random backfill VM.
The default is the most recent policy.

• Retry.period: This option specifies the duration (in
seconds) that the backfill timer waits in between
attempts to deploy backfill VMs on idle VMM nodes.
The default is 300 seconds.

• Network: This option allows the IaaS cloud
administrator to specify whether the backfill VMs
should use the public network or private.

B. Extensions to the Nimbus Workspace Service
We modified the Nimbus workspace service [16] to support

backfill VM deployments. The workspace service is
responsible for managing the VMM nodes and servicing on-
demand user requests for VMs. In particular, we added a
backfill Java class that contains the majority of the backfill
implementation code. The backfill configuration file is read
when the Nimbus workspace service is started; if backfill is

enabled then the service attempts to launch backfill VMs until
the request for resources is denied or the maximum number of
backfill instances is reached (as specified in backfill.conf). The
service also starts a backfill timer that continually loops,
sleeping for the duration specified by duration.seconds in
backfill.conf, and attempts to launch backfill VMs when it
wakes (until the request for resources is denied or the
maximum number of backfill instances have been launched).

As part of our modifications to the Nimbus workspace
service, we also modified its scheduler to detect any rejected
requests for on-demand user VMs. If we detect a rejected on-
demand user request and backfill is enabled, we attempt to
terminate the appropriate number of backfill VMs so that the
user request can be fulfilled. After the backfill VMs are
terminated we attempt to service the user request again. If we
are not able to service the request, we continue terminating
backfill VMs until we are able to service the request or all
backfill VMs are terminated. If all backfill VMs are terminated
and we are still unable to service the request, then the request is
rejected. We also modified the scheduler to detect when on-
demand users are terminating VMs. In this case backfill
attempts to re-launch backfill VMs (if backfill is enabled)
without waiting for the backfill timer to expire.

In general this is an acceptable approach, however, there is
a design flaw in this initial implementation. It is possible that
all backfill VMs could be terminated and yet the on-demand
request could still be rejected. In this case the ideal solution
would be to recognize, upfront, that the IaaS cloud is unable to
fulfill the on-demand request and, therefore, the on-demand
request should be rejected immediately before terminating any
backfill VMs. However, recognizing this upfront requires a
complete picture of the VM placement and the location of
individual VM deployments on VMM nodes.

IV. EVALUATION
Our evaluation examines an IaaS backfill deployment from

two perspectives. First, we consider the ability of the system to
increase utilization of the IaaS cloud infrastructure without
sacrificing the ability of the cloud to provision resources on-
demand. Second, we consider the ability of the system to
contribute otherwise idle cycles to process HTC jobs using
backfill VMs. We use Condor as the HTC job manager,
leveraging its ability to requeue jobs that are interrupted during
execution.

For the evaluation we deploy a backfill-enabled version of
Nimbus 2.6 on FutureGrid [8]. Nimbus runs on a cluster of 16
VMM nodes with 2.4 GHz 8-core Intel Xeon processors and 24
GB of RAM with 20 GB allocated for user VMs, allowing for a
total of 128 single-core VMs. The Nimbus workspace service
node runs on an additional node. The Nimbus workspace
service listens for incoming on-demand user requests for VMs
and launches or terminates the VMs on the VMM nodes. This
node also hosts the user VM image repository.

In our experiments, we assume that a single backfill VM
utilizes the entire VMM node (all 8 cores). We choose this
level of granularity in order to reduce virtualization overhead
for backfill VMs and avoid additional network contention
caused by transferring a backfill VM image over the network

each time it was deployed on an idle cloud node; instead the
backfill VM images were manually copied to the VMM nodes
before the evaluation began. Backfill VMs are configured as
Condor worker nodes, preconfigured (at boot) to join our
Condor master running on our evaluation node. The Condor
pool does not contain any additional worker nodes.

We use an additional two nodes (identical to the VMM
nodes described above) to generate the workload. One node is
used to host the Condor master and queues the Condor jobs.
The second node executes the workspace service workload,
requesting on-demand user VMs. On-demand user requests
only request a single core.

For all of the evaluations involving backfill we use the most
recent backfill termination policy. The most recent backfill
termination policy first terminates the backfill VMs that have
been running for the least amount of time. The backfill VMs
are terminated using clean shutdown. Cleanly shutting down
backfill VMs enables the Condor workers running inside of the
backfill VMs to notify the Condor master to reschedule its jobs.
If clean shutdown is not used with Condor and the backfill VM
is simply trashed, then Condor relies on timeouts before
rescheduling jobs, which can take up to two hours. (As of the
time of this writing Condor has an experimental feature to
reverse the direction of its pings that determine the status of
worker nodes, this would eliminate the long timeout period and
the need to cleanly shutdown the backfill VMs. We enabled the
feature, however, we did not observe the system behaving as
expected. Interrupted jobs were still experiencing prohibitively
long delays before being resubmitted to the Condor queue.
Therefore, we did not use this feature for the evaluation,
instead we terminate the backfill VMs using clean shutdown.)

For the evaluation we define the following metrics:

• Utilization is the percentage of user cycles
consumed by CPU cores on the VMM nodes in the
IaaS cloud that are either running an HTC job or
running an on-demand user VM. Because backfill
launches VMs on any idle VMM node, regardless
of the presence of HTC jobs, it is possible for the
entire IaaS infrastructure to be running backfill
VMs on all VMM nodes but still have 0%
utilization. For our evaluation backfill VMs must
be running Condor jobs for them to contribute to
the overall utilization of the infrastructure.

• First queued time is the amount of time that elapses
between the time when a Condor job is submitted
and when it first begins executing.

• Last queued time is the amount of time that elapses
between the time the Condor job is first submitted
and the time the Condor job finally begins
executing for the last time before completing
successfully. We note that it is possible for backfill
VMs to be terminated by the deployment of on-
demand user VMs, preempting Condor jobs
executing in backfill VMs, and thus requiring their
resubmission. While this may happen to a Condor
job any number of times, it is presumed that the job

will eventually be able to execute successfully to
completion.

• User VM service response time is the amount of
time it takes the Nimbus service to respond to an
on-demand user request, i.e., the time between
when the service first receives the request and the
time it determines whether a VM will be launched
or that the request will be rejected. This time does
not include the amount of time that it takes to
actually boot the on-demand user VM or propagate
the VM image, only the amount of time it takes the
service to determine whether or not the request will
be handled. If backfill is enabled and backfill VMs
need to be terminated to deploy an on-demand user
VM, the user VM service response time will
include the necessary time to terminate backfill
VMs.

A. Workload Traces
The workloads we selected are based on real workload

traces, modified to fit the size of our environment. The Condor
workload used for the evaluation consists of a Condor trace
from the Condor Log Analyzer at the University of Notre
Dame [6]. The workload contains 748 serial jobs that each
sleep for differing amounts of time, with a minimum of 1
second, a maximum of 2089 seconds, and a standard deviation
of 533.2. The Condor trace submits 400 jobs to the Condor
queue immediately, followed by an additional 348 jobs 2573
seconds later.

Along with the Condor workload we consider an on-demand
IaaS cloud workload that we selected from the University of
Chicago (UC) Nimbus science cloud [16]. We chose this
particular workload trace because, despite its lack of
dynamism, it is generally characteristic of the traces we
observed on the UC Nimbus cloud. We did not observe the UC
Nimbus cloud to be highly dynamic over relatively short time
periods (e.g., a few hours). User requests were typically for a
static set of instances over a long period of time (e.g. 6 VMs
for 24 hours). In cases where user requests overlapped, the
requests often overlapped for extended periods of time (e.g. 6

hours). Additionally, we selected this trace because it
demonstrates the expected behavior of an overprovisioned
cloud infrastructure that is the focus of this work, i.e., it
contains many idle VMM nodes available to service on-
demand requests. Although there are an infinite number of
possible on-demand and HTC workload scenarios that we
could have generated for our evaluation, many which may have
artificially highlighted the usefulness of backfill to either the
on-demand user community or the HTC user community, we
instead chose to base our evaluation off of two realistic
workload traces. By choosing two realistic workload traces we
are able to demonstrate and evaluate the usefulness of backfill
to both communities given at least one possible scenario.
(Furthermore, we selected an on-demand trace from the
considerably smaller UC Nimbus science cloud then a larger
and possibly more dynamic cloud provider, such as Amazon or
the Magellan cloud at Argonne National Laboratory [13],
because of the lack of availability of such traces at the time of
this work.)

Figure 2. On-demand user VM workload (no backfill).

Figure 3. Condor workload without on-demand user requests. All 16

VMM nodes are used exclusively to process the Condor jobs.

Figure 4. Condor workload with on-demand user requests, using the most

recent backfill termination policy. The 16 VMM nodes run both on-
demand VMs and backfill VMs to process the Condor workload.

Because the University of Chicago Nimbus cloud only
contains a total of 16 cores and our evaluation environment
contains 128 cores we multiplied the workloads by 8 so that 16
individual requests for the University of Chicago cloud (16
cores) would be 128 individual requests for the entire 128 cores
in the evaluation environment. Thus, an individual request for a
single core on the University of Chicago cloud is 8 individual
requests, each for a single core, in our evaluation environment.
The on-demand user workload requests a total of 56 individual
VMs over the course of the evaluation. Finally, we terminate
the evaluation shortly after the overlapping Condor trace
completes.

Both workloads submit individual and independent requests;
each request is for a single core. In the Condor workload the
jobs simply consist of a program that sleeps for the desired
amount of time. In the on-demand workload VMs are started
and run for the appropriate duration. Backfill VMs are capable
of executing 8 jobs concurrently across the 8 cores in a backfill
VM, while individual on-demand user requests are single-core
VMs. RAM is divided evenly among the VMs.

B. Understanding System Behavior
To understand the system behavior we compare three

different scenarios. The first scenario only considers the on-
demand user workload; the number of cores used in this
workload is shown in Figure 2. In this case the IaaS cloud
achieves an average utilization of 36.36%, shown in Figure 5,
with a minimum utilization of 0% and a maximum utilization
of 43.75%.

The second scenario simply involves running the Condor
workload on all 16 VMMs (128 cores) without the on-demand
user workload. In this case the entire Condor workload
completes in approximately 84 minutes (5042 seconds), as
shown in Figure 3.

In the third scenario the Condor workload is overlaid with
the on-demand user workload. The Condor workload takes an
additional 11 minutes and 45 seconds over the case where
Condor has exclusive access to the resources, completing in
approximately 96 minutes (5747 seconds), as shown in Figure
4. However, the utilization of the cloud infrastructure, shown in

Figure 5. IaaS cloud infrastructure utilization without backfill VMs, only

running on-demand user VMs.

Figure 6. IaaS cloud infrastructure utilization with on-demand user VMs

and backfill VMs processing Condor jobs.

Figure 7. Condor job queued time when the job first begins executing,

using the most recent backfill termination policy.

Figure 8. Condor job queued time when the job begins executing for the

last time before successful completion, using the most recent backfill
termination policy.

Figure 6, increases to an average utilization of 83.82% with a
minimum utilization of 0% and a maximum of 100%. As the
Condor jobs complete (just before 6000 seconds in the
evaluation) utilization again drops because the IaaS cloud is no
longer running Condor jobs in addition to on-demand user
VMs.

The large increase in utilization is due to the fact that the
cloud infrastructure is no longer solely dedicated to servicing
on-demand user VM requests, instead the cloud infrastructure
is also able to process jobs from a Condor workload without
compromising its ability to service on-demand VM requests.
The increase in utilization is dependent upon the amount of
work in the HTC workload. Naturally, longer and more HTC
jobs will translate into higher utilization.

While increased utilization certainly benefits the cloud
provider, Figure 4 also demonstrates that it is advantageous to
HTC workloads. The workload, which originally takes
approximately 85 minutes on the same dedicated hardware
(Figure 3), is only delayed by 11 minutes and 45 seconds
(completing in just under 96 minutes) when on-demand user
VMs are introduced into the system as shown in Figure 4.
However, presumably the cost of utilizing backfill nodes would
be lower than utilizing dedicated on-demand user VMs since
backfill VMs may be reclaimed by the cloud provider without
warning.

C. Understanding System Performance
To understand how the IaaS cloud environment and backfill

solution impacts on-demand users and HTC users we again
consider the three different scenarios. The first scenario
involves the on-demand user workload. The second scenario
involves Condor jobs running on the 16 VMM nodes without
interruption from on-demand user VMs and the third scenario
overlays the first two.

In Figure 7 we can see that the Condor first queued time is
smallest when no user VMs are present, i.e., if Condor is
allowed exclusive access to its own hardware for executing

jobs. Enabling backfill and introducing user VMs causes an
increase in the Condor first queued time because there are
fewer backfill VMs processing Condor jobs since on-demand
user VMs are also running.

When backfill is enabled there is a noticeable increase in the
amount of time that Condor jobs are delayed until they finally
begin executing before successful completion, as seen by the
numerous spikes for individual Condor jobs in Figure 8 (of
which there are a total of 48). These 48 jobs actually first begin
executing much earlier, as seen by the absence of spikes in
Figure 7. These jobs are delayed because of the arrival of the
on-demand VMs, which cause the termination of backfill VMs,
preempting the running Condor jobs. Of the 48 jobs that are
preempted the average amount of additional time these jobs are
delayed (before they begin executing for the final time) is 627
seconds with a standard deviation of 76.78 seconds; the
minimum amount of extra time that a job is delayed is 273
seconds and the maximum is 714 seconds. The 48 preempted
jobs spent a total of 22,716 CPU seconds processing the
Condor workload before they were preempted. The entire
Condor workload required a total of 355,245 CPU seconds.
Thus, for our experimental traces, the use of a backfill-enabled
IaaS cloud resulted in an additional 6.39% of overhead for the
Condor workload.

Figure 9 demonstrates the impact that backfill has on on-
demand user requests. When backfill is disabled all on-demand
user requests are handled in 2 seconds or less. However, when
backfill is enabled the amount of time to respond to an on-
demand user request can be as high as 13 seconds, though the
majority more closely match the case where backfill is
disabled. The large delay in response time is when the Nimbus
service must terminate (via clean shutdown) backfill VMs in
order to service the on-demand user request. Additionally,
because the evaluation environment consists of 8-core nodes
with backfill VMs consuming all 8 cores, whenever a backfill
VM is terminated to free space for an on-demand user VM
(even if the on-demand user request is only for a single core),
the remaining cores on the VMM node remain idle and freely
available for future on-demand user VMs.

While this evaluation is based on two real workload traces,
one can imagine that under some of the possible workloads,
backfill VMs may be more or less beneficial to IaaS cloud
providers and HTC users. Certain workloads, environment
characteristics, and backfill termination policies will
undoubtedly lend themselves as more beneficial to one
community over the other. This is something we will consider
in future work. However, our backfill solution and evaluation
demonstrates that when considering a realistic on-demand user
workload trace and a realistic Condor workload trace, a shared
infrastructure between IaaS cloud providers and an HTC job
management system can be highly beneficial to both IaaS cloud
provider and HTC users by increasing the utilization of the
cloud infrastructure (thereby decreasing the overall cost) and
contributing cycles that would otherwise be idle to processing
HTC jobs.

Figure 9. Nimbus service response time for on-demand user VM

requests. This is the time from when the Nimbus service first receives the
request until the service responds. It includes the time required to

terminate backfill VMs (when applicable), however, it does not include
the time for a user VM to boot.

V. RELATED WORK
Although our work utilizes backfill to achieve high

utilization of an IaaS infrastructure, it is different from work
that uses backfill scheduling to increase the utilization of large
supercomputers [7]. Scheduling on supercomputers does not
typically assume that backfill jobs will be preempted by an on-
demand request, seeking to immediately access the resources,
while our work assumes this to be the default case. Instead,
these backfill scheduling algorithms only attempt to backfill
unused resources with requests that match the available slots
both in their resource needs as well as their expected runtime.
There are, however, preemption based backfill solutions [22]
that share many similar characteristics to our work. The major
exception is their focus on queue-based supercomputers and
our focus on IaaS cloud infrastructures.

Volunteer computing systems, such as BOINC [2], harvest
cycles from idle systems distributed across the Internet. Major
examples of volunteer applications include SETI@Home [2]
and Folding@Home [11]. These applications are designed to
accommodate interruptions in service since widely distributed
computers, operated by a seemingly infinite number of
disparate users, cannot provide any guarantee of service. In the
case of volunteer computing systems interruptions in service
are usually the result of users returning to their systems to do
work, systems crashing, or systems becoming disconnected
from the Internet. Much research on volunteer computing
focuses on the usefulness, efficiency, and failure prediction of
these volatile environments [1], [3], [18], [19]. Our work
focuses on providing cycles within an IaaS infrastructure that
would have otherwise been idle to other processes, such as
HTC or volunteer computing, where the services may be
interrupted by the arrival of requests for on-demand VMs.
Applications that leverage volunteer computing systems would
be ideal candidates for backfill VMs because of their ability to
handle unexpected failures in service.

In [23] we also leverage recovery techniques, specifically
suspending and resuming VMs, to achieve high utilization of
IaaS cloud infrastructures. While the goal of maintaining high
utilization via introducing different types of leases is the same
as the work described here, the leases themselves as well as the
recovery technique used, specifically that of suspending and
resuming VMs, is different from the focus in our work. Instead
of using suspend/resume to support advanced reservations we
leverage a recovery system that uses resubmission (Condor) to
ensure that high utilization is achieved and no work is lost.

Another area that shares related themes to our work is spot
pricing, as exemplified by Amazon [2]. With spot pricing users
place bids for instances and the cloud provider periodically
adjusts the price of spot instances, terminating the spot
instances with bids that fall below the new spot price and
launching instances that meet or exceed the spot price. Our
work uses the current demand for on-demand user VMs to
determine the availability for backfill VMs while Amazon
bases availability of spot instances on a spot price.

VI. FUTURE WORK
The backfill implementation used in this paper was an

initial prototype created to demonstrate of the usefulness of

combining IaaS cloud infrastructure resources with other
purposes, such as HTC, through backfill VMs. The prototype
implementation used in this work is publicly available on
GitHub [15]. The 2.7 release of the Nimbus toolkit [16]
includes the official release of the backfill implementation. In
the 2.7 release backfill instances are essentially zero-cost spot
instances that have a lower priority than on-demand instances
and spot instances. Therefore, backfill instances are
preemptible by both on-demand requests and spot requests.

The future work opens up the opportunity to explore
different variants of the policies described in Section II. For
instance, exploring finer granularity with which to deploy
VMs, optimizing the backfill image deployment method, as
well as termination policies. Another possible area for future
work is suspending backfill VMs instead of terminating them.
Such a solution may be ideal for a backfill application that does
not leverage resubmission as its recovery mechanism.

Another set of challenges arises if we broaden the definition
of the preemptible lease, e.g., by removing the assumption that
only one type of backfill VMs may be used or that only the
administrator can configure backfill VMs. One simple
refinement would be for the administrator to define multiple
backfill VMs and have policies on how backfill resources are
shared among them (e.g., what percentage of available cycles
should be devoted to each). However, if users are to submit
backfill VMs (i.e., the preemptible lease as defined in this
paper would no longer be “fixed”) some arbitration mechanism
needs to be defined for deciding between various user/instance
requests. For example, AWS uses auctions to make such
decisions (i.e., spot instances) but many other mechanisms
could also be explored. Additionally, we could also consider
different types of leases, e.g., to provide for the impact of
backfill VMs on parallel jobs where all processes for a single
parallel job must be available.

Another set of challenges arises out of exploring various
aspects of resource utilization, energy savings, cost and pricing.
An assumption throughout this paper has been that improving
utilization is advantageous because it leads to better resource
amortization and thus lower costs per computation cycle. This
need not necessarily be so: green computing techniques
allowing providers to power down a proportion of resources
[12] may be a better option in some cases, and prices obtained
by auction need not necessarily be sufficient to amortize cost.
A more thorough model taking into accounts these factors
would be needed.

VII. CONCLUSIONS
In this paper we propose a cloud infrastructure that

combines on-demand allocation of resources with opportunistic
provisioning of cycles from idle cloud nodes to other processes,
such as HTC, by deploying backfill VMs. We extend the open
source Nimbus IaaS toolkit to deploy backfill VMs on idle
cloud nodes.

We evaluate the backfill solution using an on-demand user
workload and an HTC workload. We find backfill VMs
contribute to an increase of the utilization of the IaaS cloud
infrastructure from 37.5% to 100% during a portion of the
evaluation trace but result in only 6.39% additional overhead

for processing the HTC workload. Additionally, backfill VMs
make available cycles that would have otherwise been idle to
assist in processing HTC jobs. In particular, a Condor workload
that originally completes in approximately 85 minutes on
dedicated hardware is only delayed by 11 minutes and 45
seconds (completing in just under 96 minutes) when on-
demand user VMs are introduced into the system.

ACKNOWLEDGMENTS
We would like to thank David LaBissoniere for his help

and advice deploying and evaluating our system on FutureGrid.

This material is based upon work supported in part by NSF
SDCI grant No. 0721867 and, in part, the NSF Grant No.
0910812 to Indiana University for "FutureGrid: An
Experimental, High-Performance Grid Test-bed." Partners in
the FutureGrid project include U. Chicago, U. Florida, San
Diego Supercomputer Center - UC San Diego, U. Southern
California, U. Texas at Austin, U. Tennessee at Knoxville, U.
of Virginia, Purdue I., and T-U. Dresden.

REFERENCES
[1] Acharya A, Edjlali G, and Saltz J. “The Utility of Exploiting Idle

Workstations for Parallel Computation,” SIGMETRICS ’97, pp. 225-34.
[2] Amazon Web Services. Amazon.com, Inc. [Online]. Retreived

December 6, 2010, from: http://www.amazon.com/aws/
[3] Anderson D and Fedak G. “The Computational and Storage Potential of

Volunteer Computing,” CCGRID’06, 2006, p. 73-80.
[4] Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D.

SETI@home: An Experiment in Public-Resource Computing.
Communications of the ACM, 45(11), November 2002, 56-61.

[5] Anderson, D. “BOINC: A System for Public-Resource Computing and
Storage,” 5th IEEE/ACM Workshop on Grid Computing, Nov. 2004.

[6] Douglas Thain, David Cieslak, and Nitesh Chawla, "Condor Log
Analyzer", http://condorlog.cse.nd.edu, 2009.

[7] Feitelson DG, Rudolph L. Parallel job scheduling: Issues and
approaches. Lecture Notes in Computer Science: Job Scheduling
Strategies for Parallel Processing, 949, 1995.

[8] FutureGrid. [Online]. Retreived December 6, 2010, from:
http://futuregrid.org/

[9] Internet Retailer Magazine. [Online]. Retreived December 6, 2010,
from: http://www.internetretailer.com/top500/list/

[10] Keahey, K., I. Foster, T. Freeman, and X. Zhang. Virtual Workspaces:
Achieving Quality of Service and Quality of Life in the Grid. Scientific

Programming Journal, vol 13, No. 4, 2005, Special Issue: Dynamic
Grids and Worldwide Computing, pp. 265-276.

[11] Larson SM, Snow CD, Shirts M, Pande VS. Folding@Home and
Genome@Home: Using distributed computing to tackle previously
intractable problems in computational biology. Computational
Genomics, Horizon Press, 2002.

[12] Lefe`vre, L. and Orgerie, AC. “Designing and evaluating an energy
efficient cloud,” The Journal of Supercomputing, vol. 51, pp. 352–373,
2010,

[13] Magellan. [Online]. Retreived Feburary 11, 2011, from:
http://magellan.alcf.anl.gov/

[14] Michael A, et al., “Above the Clouds: A Berkeley View of Cloud
Computing,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-28, Feb 2009.

[15] Nimbus 2.6 Backfill (prototype). GitHub. [Online]. Retreived December
6, 2010, from: https://github.com/pdmars/nimbus/tree/backfill-2.6

[16] Nimbus. [Online]. Retreived December 6, 2010, from:
http://www.nimbusproject.org/

[17] Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L,
and Zagorodnov D. Eucalyptus opensource cloud-computing system. In
CCA08: Cloud Computing and Its Applications, 2008.

[18] Ren X, Lee S, Eigenmann R, and Bagchi S. “Resource Failure
Prediction in Fine-Grained Cycle Sharing System,” HPDC ’06, 2006.

[19] Ryu K and Hollingsworth J. "Unobtrusiveness and Efficiency in Idle
Cycle Stealing for PC Grids," in Proceedings of IPDPS’04, 2004, p. 62a.

[20] Science Clouds. [Online]. Retreived December 6, 2010, from:
http://www.scienceclouds.org/

[21] Smith, JE. and Nair, R. Virtual machines: versatile platforms for systems
and processes. Morgan Kaufmann Publishers, San Francisco, CA, USA,
2005.

[22] Snell Q, Clement M, and Jackson D. Preemption based backfill. In
Feitelson, Rudolph, and Schwiegelshohn, editors, Job Scheduling
Strategies for Parallel Processing, pages 24–37. Springer Verlag, 2002.
Lect. Notes Comput. Sci. vol. 2537.

[23] Sotomayor B, Keahey K, Foster I. Combining Batch Execution and
Leasing Using Virtual Machines. the 17th International ACM
Symposium on High-Performance Parallel and Distributed Computing
(HPDC) Boston, MA. June 2008.

[24] Tannenbaum T, Wright D, Miller K, Livny M. Condor - A Distributed
Job Scheduler, in Thomas Sterling, editor, Beowulf Cluster Computing
with Linux, The MIT Press, 2002.

[25] Woitaszek, M. and Tufo, H., “Developing a cloud computing charging
model for high-performance computing resources,” in Computer and
Information Technology (CIT), 2010 IEEE 10th International
Conference on, July 2010, pp. 210–217.

