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Abstract— A key advantage of Infrastructure-as-a-Service (IaaS) 
clouds is providing users on-demand access to resources. 
However, to provide on-demand access, cloud providers must 
either significantly overprovision their infrastructure (and pay a 
high price for operating resources with low utilization) or reject a 
large proportion of user requests (in which case the access is no 
longer on-demand). At the same time, not all users require truly 
on-demand access to resources. Many applications and 
workflows are designed for recoverable systems where 
interruptions in service are expected. For instance, many 
scientists utilize High Throughput Computing (HTC)-enabled 
resources, such as Condor, where jobs are dispatched to available 
resources and terminated when the resource is no longer 
available.  

We propose a cloud infrastructure that combines on-demand 
allocation of resources with opportunistic provisioning of cycles 
from idle cloud nodes to other processes by deploying backfill 
Virtual Machines (VMs). For demonstration and experimental 
evaluation, we extend the Nimbus cloud computing toolkit to 
deploy backfill VMs on idle cloud nodes for processing an HTC 
workload. Initial tests show an increase in IaaS cloud utilization 
from 37.5% to 100% during a portion of the evaluation trace but 
only 6.39% overhead cost for processing the HTC workload. 

We demonstrate that a shared infrastructure between IaaS cloud 
providers and an HTC job management system can be highly 
beneficial to both the IaaS cloud provider and HTC users by 
increasing the utilization of the cloud infrastructure (thereby 
decreasing the overall cost) and contributing cycles that would 
otherwise be idle to processing HTC jobs. 

Cloud computing, Infrastructure-as-a-Service, High Throughput 
Computing 

I.  INTRODUCTION 
In the recent years, Infrastructure-as-a-Service (IaaS) cloud 

computing [14] has emerged as an attractive alternative to the 
acquisition and management of physical resources. The on-
demand provisioning it supports allows users to elastically 
expand and contract the resource base available to them based 
on an immediate need – a pattern that enables a quick 
turnaround time when dealing with emergencies, working 
towards deadlines, or growing an institutional resource base. 
This pattern makes it convenient for institutions to configure 
private clouds that allow their users a seamless or near 
seamless transition to community or commercial clouds 
supporting compatible VM images and cloud interfaces. Such 
private clouds are typically configured using open source IaaS 
implementations such as Nimbus [16] or Eucalyptus [17]. 

However, such private cloud installations also face a 
utilization problem. In order to ensure on-demand availability a 
provider needs to overprovision: keep a large proportion of 
nodes idle so that they can be used to satisfy an on-demand 
request, which could come at any time. The need to keep all 
these nodes idle leads to low utilization. The only way to 
improve it is to keep fewer nodes idle. But this means 
potentially rejecting a higher proportion of requests – to a point 
at which a provider no longer provides on-demand computing. 
This situation is particularly hard to accept in the world of 
scientific computing where the use of batch schedulers 
typically ensures high utilization [25] and thus much better 
resource amortization. Thus, potential low utilization 
constitutes a significant potential obstacle to the adoption of 
cloud computing in the scientific world.  

At the same time, while the on-demand capabilities of IaaS 
clouds are ideal for many scientific use cases, there are others 
that do not necessarily require on-demand access to resources. 
Many systems, specifically volunteer computing systems such 
as SETI@Home [4] and Folding@Home [11], are capable of 
taking advantage of resources available opportunistically and 
are also preemptible, i.e., designed as failure resilient systems 
where interruptions in service can be handled without 
compromising the integrity of computation. One example in the 
scientific community is the use of high throughput computing 
(HTC), as implemented by e.g., the Condor [24] system where 
users employ HTC-enabled resources to process their 

 
Figure 1.  Example Backfill Deployment 
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workloads. These applications are designed to “scavenge” 
unused resource cycles: for example, when a user stops using 
their desktop, the screensaver might use the resource to run a 
volunteer computing program. The job may then be preempted 
when the resource becomes unavailable (i.e., the user is using it 
again), in which case the job is typically requeued and 
rescheduled on another available resource by the HTC system 
that manages it. 

We propose a cloud infrastructure that combines on-
demand allocation of resources with opportunistic provisioning 
of cycles from idle cloud nodes to other processes, such as 
HTC, by deploying backfill VMs. Backfill VMs are deployed 
on idle cloud nodes and can be configured to perform any 
desired function. A backfill VM is terminated when the 
resource is needed to satisfy an on-demand request. If we can 
ensure that the computation occurring in backfill VMs is 
resilient to such sudden termination, the time that would 
otherwise be idle can be profitably spent. Furthermore, cycles 
via backfill VMs can be provided to users at a lower cost than 
on-demand VMs because of the cloud providers ability to 
terminate the instances when needed, thus for users that work 
with HTC resources and possibly expect such behavior already, 
backfill VMs would provide a less expensive option when 
moving their workloads to the cloud. Overall, this design 
achieves two goals: for cloud providers, it offers a path to 
higher utilized clouds; for cloud users, it offers another type of 
resource lease, potentially cheaper than on-demand, non-
preemptible resource. 

In our work we extend the Nimbus toolkit [16] to deploy 
backfill VMs on idle Virtual Machine Monitor (VMM) nodes 
[21]. Nimbus is an open source toolkit for deploying IaaS 
clouds, designed with extensibility in mind, which makes it 
particularly suitable for projects such as the one described here. 
To illustrate how the system works, we configure the backfill 
VMs as Condor workers that integrate with a Condor pool to 
process HTC jobs. We evaluate the ability of the system to 
increase utilization of the IaaS cloud infrastructure without 
sacrificing the ability of the IaaS cloud to provision resources 
on-demand. We also evaluate the ability of the system to 
contribute cycles that would otherwise be idle to processing 
HTC jobs.  

We find that during certain portions of our experimental 
evaluation backfill VMs contribute to an increase in the 
utilization of the IaaS cloud infrastructure from 37.5% to 100% 
with only 6.39% overhead cost for processing the HTC 
workload. Additionally, backfill VMs process the entire 
Condor workload using what would have otherwise been idle 
cycles.  

The remainder of the paper is organized as follows. In 
Section II we examine the general approach of deploying 
backfill VMs on idle IaaS cloud nodes, in Section III we 
discuss our specific extensions to the Nimbus toolkit in order to 
deploy backfill VMs on idle cloud nodes. In Section IV we 
evaluate our implementation, in Section V we cover the related 
work in the field, and in Section VI we discuss our directions 
for future work. We conclude in Section VII. 

II. APPROACH 
A compute infrastructure cloud operates by allowing a user 

to make leases against its pool of resources; an infrastructure 
lease makes a resource available to the user based on set of 
lease terms defining the availability, capacity and general 
conditions of a lease. In our system we focus on investigating 
two types of leases: 

• On-demand, non-preemptible and flexible leases give a 
user access to a resource within interactive time of 
making the request and make the resource available for 
an agreed-upon period of time. The user can deploy 
any VM compatible with the system.  

• Opportunistic, preemptible and pre-set leases give a 
user access to a resource at an indeterminate time and 
make the resource available to the user for an 
indeterminate amount of time. Further, this resource is 
pre-defined for the user by the cloud administrator, i.e. 
the user cannot provide his or her own VM.  

In the rest of the paper we will be referring to them as on-
demand leases and preemptible leases respectively. We define 
the following roles in our system. An on-demand user is a user 
that requests on-demand VMs/leases from an IaaS cloud. An 
on-demand VM is an IaaS VM that has been provisioned via on 
on-demand lease for a specific user. A backfill VM is a VM that 
has been deployed automatically by the IaaS cloud manager on 
an idle IaaS node using a preemptible lease. An IaaS cloud 
administrator is the person or persons responsible for 
configuring and managing the IaaS cloud resource. An HTC 
user is a user that submits jobs to an HTC queue and an HTC 
worker is a system that process jobs from the HTC queue. 

In the context of IaaS clouds, backfill VMs are generic 
VMs deployed on IaaS resources using a preemptible lease that 
may be configured to perform any function. Backfill VMs have 
two major constraints. First, backfill VMs may be terminated 
suddenly in order to free up space for the IaaS cloud manager 
to service an on-demand lease. Second, because of the 
unpredictable timing of on-demand leases (from any number of 
unique users), a variable number of backfill VMs may be 
available at any given time. Thus, we assume that applications 
executing inside backfill VMs are designed to handle 
environments that contain a variable number of workers that 
may join or leave the system at any time.  

Certain applications are not well suited for these volatile 
environments, for example, parallel applications that require all 
processes to be present for the duration of the application’s 
execution and lack checkpoint/restart capabilities. An example 
of a system that is well-suited for backfill VMs are High 
Throughput Computing (HTC) workloads [24]. HTC 
workloads typically consist of a large number of jobs that 
eventually need to be processed. An assumption of HTC 
workloads is that they do not have an immediate deadline and 
therefore do not need resources to be available at a particular 
time. In addition, terminating individual HTC jobs in the 
middle of execution and requeuing them for later execution is 
an acceptable action as long as the system is eventually able to 
process the workload.  



This work further assumes that backfill VM images and 
deployments are managed by the IaaS cloud administrator; 
backfill VMs are not directly managed by remote cloud users. 
This work also assumes that the HTC scheduler is not aware of 
the IaaS cloud scheduler details and vice versa. Thus, the 
scheduling of HTC jobs on HTC workers (in backfill VMs) is 
separate from the launching and terminating of user VMs on 
the IaaS cloud. 

A. Architecture 
Figure 1 is a simple example deployment consisting of an 

IaaS Nimbus cloud using backfill VMs to run Condor HTC 
jobs in order to increase cloud infrastructure utilization. In this 
example the HTC user submits 3 individual tasks to the Condor 
master, which is able to schedule 1 task immediately on a local 
worker. However, because the remaining resources in site B’s 
Condor pool are busy, Condor leverages the cycles provided by 
site A’s backfill VMs to launch the other 2 tasks immediately. 
Condor is an ideal candidate for such a deployment because of 
its original design as a cycle-scavenger where idle desktop 
machines execute jobs until the system’s user returns, after 
which the job is either migrated to another system or 
prematurely terminated and re-launched on another system. A 
backfill deployment could be much more complex then the 
example depicted in Figure 1. For instance, backfill VMs could 
host a number of different backfill processes in addition to 
Condor workers. The Condor workers could also be configured 
to execute jobs from multiple Condor pools or sites instead of a 
single pool, as shown in the figure.  

IaaS cloud administrators must consider a variety of 
different backfill configurations when deploying a backfill 
solution on an IaaS cloud. The configuration is influenced by 
the characteristics of the underlying physical IaaS resources, 
the users of on-demand leases, and the users of preemptible 
leases. 

First, appropriate backfill applications and workflows 
should be identified. These applications should accommodate 
the constraints discussed previously, namely, they should be 
able to utilize a variable number of nodes that may join or leave 
the system at any time. 

Second, if the IaaS Virtual Machine Monitor (VMM) nodes 
have multiple cores, the IaaS cloud administrator must 
determine the granularity with which to deploy backfill VMs. 
One possible solution is to deploy a single backfill VM for 
each core on a VMM node. This approach allows the IaaS 
cloud manager to have fine-grained control over VM 
deployment. For example, a node with 8 cores may be 
comprised of 3 user VMs and 5 backfill VMs. However, the 
disadvantage of this approach is the increased overhead 
introduced by running additional VMs. An alternative solution 
is to deploy a single backfill VM per VMM node, utilizing all 
of the available cores in the backfill VM. This approach 
reduces the virtualization overhead on the VMM node since 
only a single backfill VM would be running, however, if the 
cloud receives an on-demand user request for a single core it is 
possible that the entire backfill VM will need to be terminated 
to satisfy the on-demand request. This would leave the 
additional VMM cores idle. Alternatively, the administrator 
may wish to configure VM deployments based on allocation of 

other resources, such as RAM, instead of (or in addition to) 
CPU cores. 

Third, the IaaS cloud administrator must determine the 
approximate size of the backfill deployment, relative to the size 
of the IaaS cloud. The administrator may allow the backfill 
deployment to utilize all available nodes, however, the 
administrator should consider the additional overhead required 
to terminate backfill nodes in order to fulfill on-demand user 
requests. Depending on the method used to terminate backfill 
VMs (e.g. immediately trash the VM or cleanly shut it down) 
and the number of backfill nodes being terminated, this 
overhead may be significant. Consequently, IaaS cloud 
administrators may configure backfill deployments to only 
utilize a percentage of idle nodes or never allow backfill 
deployments exceed a preset and static number of idle nodes.  

Finally, the IaaS cloud administrator must determine the 
backfill VM image deployment method. A fresh backfill VM 
image could potentially be transferred from the VM image 
repository for every backfill VM deployment (this process is 
referred to as VM image propagation and is a typical pattern 
that remote users expect for their deployments); however, this 
introduces network contention and may slow the deployment of 
on-demand user VMs. Another solution is to propagate the 
backfill image to the node and cache it on the node, only 
propagating it again if the image is updated or is removed from 
the cache on the node. A third and simple solution is to 
manually place the backfill image on each VMM node. Thus, 
when a backfill VM boots, the image is already on the VMM 
node and doesn’t require an image to be copied. This approach 
reduces network contention (since it is only performed at select 
times) and reduces launch time for the VM (since the backfill 
image doesn’t need to be copied across the network). However, 
any changes to the backfill image require that the IaaS cloud 
administrator push it out to all VMM nodes. 

B. Backfill Termination Policies 
Backfill VMs are deployed on idle VMM nodes and 

terminated whenever space is needed to service an on-demand 
lease. However, the specific backfill VMs that are selected for 
termination may impact the services, applications, or 
workflows executing inside those VMs. For this reason, ideally 
the backfill VM termination policies should consider the 
applications and services running inside those VMs as well as 
generic factors such as the need for clean shutdown, the ability 
of an application to checkpoint/restart, etc. We discuss below 
two simple policies that do not integrate such hints and 
highlight their shortcomings.  

One simple policy is to select the backfill VMs to terminate 
at random. This approach ignores a number of factors that 
could impact the services and applications running inside 
backfill VMs. In particular, if the random backfill VM selected 
for termination is the only backfill VM performing a useful 
task then its work may be lost while idle backfill VMs continue 
running.  

Another policy is to select the backfill VM that has been 
running for the least amount of time. This policy makes the 
assumption that the backfill VMs running the longest also run 
long-running jobs that have performed the most work and 



therefore will lose the most work when terminated. The 
intuition behind this policy is that a workload consisting 
entirely of short running jobs (e.g. less then a few minutes) will 
only be slightly impacted by the termination of any backfill 
VM however, workloads that consist of long running jobs (or a 
combination of long and short jobs) will be impacted more by 
the termination of a VM that has been deployed for an 
extended period of time. In this case all of the VM's work will 
be lost unless the application supports checkpoint/restart or 
migration. It is, however, possible that the backfill VM running 
the longest will not always be the backfill VM with the most 
work to lose; without tighter integration between the HTC job 
manager and backfill termination policy this information is not 
readily accessible.  

More advanced backfill termination policies will require 
“hints” from the IaaS scheduler in the form of a more complete 
picture of cloud VM placement or integration with the 
applications and services running inside of the backfill VMs. 
For instance, if the backfill termination policy is aware of VM 
placement on individual VMM nodes, it may be able to select 
the fewest number of backfill VMs for termination in order to 
satisfy an on-demand lease instead of blindly terminating 
backfill VM’s until the request can be fulfilled. Alternatively, if 
the backfill termination policy integrates with the applications 
and services running inside of backfill VMs then it may be able 
to identify which backfill VMs are performing useful tasks and 
avoid terminating those VMs. 

III. IMPLEMENTATION 
We extend the open source Nimbus cloud computing 

toolkit, which provides on-demand access to resources (in the 
form of VMs), to support the deployment of preemptible leases 
on idle cloud nodes, also referred to as backfill. We make a 
number of simplifying assumptions in our current 
implementation. First, the Nimbus administrator must 
configure backfill. On-demand cloud users cannot elect to 
deploy backfill VMs. Second, the current implementation is 
capable of using only a single backfill VM image per VMM 
node. Different backfill VM images could be deployed on 
different VMM nodes, allowing multiple backfill VM images 
to operate within the same IaaS cloud, each performing 
different functions. 

Unless the user specifies the max number of backfill 
instances, backfill automatically attempts to deploy as many 
backfill VMs as possible when it is enabled. Initially, we 
support two termination policies for selecting backfill VMs for 
termination in order to fulfill an on-demand lease. The first 
policy simply selects a random backfill VM. The second 
policy, and the default, terminates the most recently deployed 
backfill VM in an attempt to minimize the amount of work 
“lost” by the premature termination of backfill VMs. In future 
work we hope to add additional backfill termination policies.  

Finally, our backfill implementation cleanly shuts down the 
backfill VM. Clean shutdown requires additional time over 
trashing the VM, however, performing a clean shutdown 
notifies services and applications running inside the backfill 
VM that the VM will be terminated, allowing them to respond 

appropriately (e.g. notify a central manager to reschedule 
currently running jobs). 

A. Backfill Configuration Options 
Only the Nimbus cloud administrator can configure 

Backfill. The main configuration options are specified in a 
backfill.conf file on the Nimbus service node, allowing 
administrators to easily configure and deploy backfill VMs on 
Nimbus clouds. The backfill.conf options include: 

• Backfill.disabled: This option specifies whether 
backfill is enabled or disabled for the specific cloud. 
The default is disabled. 

• Max.instances: This option specifies the maximum 
number of backfill VMs to launch (assuming there are 
enough idle nodes). The default, 0, launches as many 
as possible. 

• Disk.image: This option specifies the full path to the 
backfill VM image on the VMM nodes. This option 
assumes that the backfill VM image has already been 
pushed out to the VMM node, the Nimbus service 
does not automatically transfer it. The image must be 
in the same location on every VMM node. 

• Memory.MB: This option specifies the amount of 
memory (RAM) to use for backfill VMs. The default 
is 64 MB. 

• VCPUs: This option specifies the number of VCPUs 
to use for backfill VMs. The default is 1. 

• Duration.seconds: This option specifies the amount of 
time (in seconds) backfill VMs should run before 
being terminated (currently Nimbus doesn’t support 
“infinite” length VM deployments). The default is one 
week.  

• Termination.policy: This option specifies the 
termination policy to use when terminating backfill 
VMs. The policies currently supported include a 
“most recent” policy that first terminates backfill VMs 
running for the least amount of time and an “any” 
policy that simply terminates a random backfill VM. 
The default is the most recent policy. 

• Retry.period: This option specifies the duration (in 
seconds) that the backfill timer waits in between 
attempts to deploy backfill VMs on idle VMM nodes. 
The default is 300 seconds.  

• Network: This option allows the IaaS cloud 
administrator to specify whether the backfill VMs 
should use the public network or private. 

B. Extensions to the Nimbus Workspace Service 
We modified the Nimbus workspace service [16] to support 

backfill VM deployments. The workspace service is 
responsible for managing the VMM nodes and servicing on-
demand user requests for VMs. In particular, we added a 
backfill Java class that contains the majority of the backfill 
implementation code. The backfill configuration file is read 
when the Nimbus workspace service is started; if backfill is 



enabled then the service attempts to launch backfill VMs until 
the request for resources is denied or the maximum number of 
backfill instances is reached (as specified in backfill.conf). The 
service also starts a backfill timer that continually loops, 
sleeping for the duration specified by duration.seconds in 
backfill.conf, and attempts to launch backfill VMs when it 
wakes (until the request for resources is denied or the 
maximum number of backfill instances have been launched). 

As part of our modifications to the Nimbus workspace 
service, we also modified its scheduler to detect any rejected 
requests for on-demand user VMs. If we detect a rejected on-
demand user request and backfill is enabled, we attempt to 
terminate the appropriate number of backfill VMs so that the 
user request can be fulfilled. After the backfill VMs are 
terminated we attempt to service the user request again. If we 
are not able to service the request, we continue terminating 
backfill VMs until we are able to service the request or all 
backfill VMs are terminated. If all backfill VMs are terminated 
and we are still unable to service the request, then the request is 
rejected. We also modified the scheduler to detect when on-
demand users are terminating VMs. In this case backfill 
attempts to re-launch backfill VMs (if backfill is enabled) 
without waiting for the backfill timer to expire. 

In general this is an acceptable approach, however, there is 
a design flaw in this initial implementation. It is possible that 
all backfill VMs could be terminated and yet the on-demand 
request could still be rejected. In this case the ideal solution 
would be to recognize, upfront, that the IaaS cloud is unable to 
fulfill the on-demand request and, therefore, the on-demand 
request should be rejected immediately before terminating any 
backfill VMs. However, recognizing this upfront requires a 
complete picture of the VM placement and the location of 
individual VM deployments on VMM nodes. 

IV. EVALUATION 
Our evaluation examines an IaaS backfill deployment from 

two perspectives. First, we consider the ability of the system to 
increase utilization of the IaaS cloud infrastructure without 
sacrificing the ability of the cloud to provision resources on-
demand. Second, we consider the ability of the system to 
contribute otherwise idle cycles to process HTC jobs using 
backfill VMs. We use Condor as the HTC job manager, 
leveraging its ability to requeue jobs that are interrupted during 
execution. 

For the evaluation we deploy a backfill-enabled version of 
Nimbus 2.6 on FutureGrid [8]. Nimbus runs on a cluster of 16 
VMM nodes with 2.4 GHz 8-core Intel Xeon processors and 24 
GB of RAM with 20 GB allocated for user VMs, allowing for a 
total of 128 single-core VMs. The Nimbus workspace service 
node runs on an additional node. The Nimbus workspace 
service listens for incoming on-demand user requests for VMs 
and launches or terminates the VMs on the VMM nodes. This 
node also hosts the user VM image repository.   

In our experiments, we assume that a single backfill VM 
utilizes the entire VMM node (all 8 cores). We choose this 
level of granularity in order to reduce virtualization overhead 
for backfill VMs and avoid additional network contention 
caused by transferring a backfill VM image over the network 

each time it was deployed on an idle cloud node; instead the 
backfill VM images were manually copied to the VMM nodes 
before the evaluation began. Backfill VMs are configured as 
Condor worker nodes, preconfigured (at boot) to join our 
Condor master running on our evaluation node. The Condor 
pool does not contain any additional worker nodes. 

We use an additional two nodes (identical to the VMM 
nodes described above) to generate the workload. One node is 
used to host the Condor master and queues the Condor jobs. 
The second node executes the workspace service workload, 
requesting on-demand user VMs. On-demand user requests 
only request a single core.  

For all of the evaluations involving backfill we use the most 
recent backfill termination policy. The most recent backfill 
termination policy first terminates the backfill VMs that have 
been running for the least amount of time. The backfill VMs 
are terminated using clean shutdown. Cleanly shutting down 
backfill VMs enables the Condor workers running inside of the 
backfill VMs to notify the Condor master to reschedule its jobs. 
If clean shutdown is not used with Condor and the backfill VM 
is simply trashed, then Condor relies on timeouts before 
rescheduling jobs, which can take up to two hours. (As of the 
time of this writing Condor has an experimental feature to 
reverse the direction of its pings that determine the status of 
worker nodes, this would eliminate the long timeout period and 
the need to cleanly shutdown the backfill VMs. We enabled the 
feature, however, we did not observe the system behaving as 
expected. Interrupted jobs were still experiencing prohibitively 
long delays before being resubmitted to the Condor queue. 
Therefore, we did not use this feature for the evaluation, 
instead we terminate the backfill VMs using clean shutdown.) 

For the evaluation we define the following metrics: 

• Utilization is the percentage of user cycles 
consumed by CPU cores on the VMM nodes in the 
IaaS cloud that are either running an HTC job or 
running an on-demand user VM. Because backfill 
launches VMs on any idle VMM node, regardless 
of the presence of HTC jobs, it is possible for the 
entire IaaS infrastructure to be running backfill 
VMs on all VMM nodes but still have 0% 
utilization. For our evaluation backfill VMs must 
be running Condor jobs for them to contribute to 
the overall utilization of the infrastructure. 

• First queued time is the amount of time that elapses 
between the time when a Condor job is submitted 
and when it first begins executing.  

• Last queued time is the amount of time that elapses 
between the time the Condor job is first submitted 
and the time the Condor job finally begins 
executing for the last time before completing 
successfully. We note that it is possible for backfill 
VMs to be terminated by the deployment of on-
demand user VMs, preempting Condor jobs 
executing in backfill VMs, and thus requiring their 
resubmission. While this may happen to a Condor 
job any number of times, it is presumed that the job 



will eventually be able to execute successfully to 
completion. 

• User VM service response time is the amount of 
time it takes the Nimbus service to respond to an 
on-demand user request, i.e., the time between 
when the service first receives the request and the 
time it determines whether a VM will be launched 
or that the request will be rejected. This time does 
not include the amount of time that it takes to 
actually boot the on-demand user VM or propagate 
the VM image, only the amount of time it takes the 
service to determine whether or not the request will 
be handled. If backfill is enabled and backfill VMs 
need to be terminated to deploy an on-demand user 
VM, the user VM service response time will 
include the necessary time to terminate backfill 
VMs.  

A. Workload Traces 
The workloads we selected are based on real workload 

traces, modified to fit the size of our environment. The Condor 
workload used for the evaluation consists of a Condor trace 
from the Condor Log Analyzer at the University of Notre 
Dame [6]. The workload contains 748 serial jobs that each 
sleep for differing amounts of time, with a minimum of 1 
second, a maximum of 2089 seconds, and a standard deviation 
of 533.2. The Condor trace submits 400 jobs to the Condor 
queue immediately, followed by an additional 348 jobs 2573 
seconds later. 

Along with the Condor workload we consider an on-demand 
IaaS cloud workload that we selected from the University of 
Chicago (UC) Nimbus science cloud [16]. We chose this 
particular workload trace because, despite its lack of 
dynamism, it is generally characteristic of the traces we 
observed on the UC Nimbus cloud. We did not observe the UC 
Nimbus cloud to be highly dynamic over relatively short time 
periods (e.g., a few hours). User requests were typically for a 
static set of instances over a long period of time (e.g. 6 VMs 
for 24 hours). In cases where user requests overlapped, the 
requests often overlapped for extended periods of time (e.g. 6 

hours). Additionally, we selected this trace because it 
demonstrates the expected behavior of an overprovisioned 
cloud infrastructure that is the focus of this work, i.e., it 
contains many idle VMM nodes available to service on-
demand requests. Although there are an infinite number of 
possible on-demand and HTC workload scenarios that we 
could have generated for our evaluation, many which may have 
artificially highlighted the usefulness of backfill to either the 
on-demand user community or the HTC user community, we 
instead chose to base our evaluation off of two realistic 
workload traces. By choosing two realistic workload traces we 
are able to demonstrate and evaluate the usefulness of backfill 
to both communities given at least one possible scenario. 
(Furthermore, we selected an on-demand trace from the 
considerably smaller UC Nimbus science cloud then a larger 
and possibly more dynamic cloud provider, such as Amazon or 
the Magellan cloud at Argonne National Laboratory [13], 
because of the lack of availability of such traces at the time of 
this work.) 

 
Figure 2.  On-demand user VM workload (no backfill). 

 
Figure 3.  Condor workload without on-demand user requests. All 16 

VMM nodes are used exclusively to process the Condor jobs. 

 
Figure 4.  Condor workload with on-demand user requests, using the most 

recent backfill termination policy. The 16 VMM nodes run both on-
demand VMs and backfill VMs to process the Condor workload. 



Because the University of Chicago Nimbus cloud only 
contains a total of 16 cores and our evaluation environment 
contains 128 cores we multiplied the workloads by 8 so that 16 
individual requests for the University of Chicago cloud (16 
cores) would be 128 individual requests for the entire 128 cores 
in the evaluation environment. Thus, an individual request for a 
single core on the University of Chicago cloud is 8 individual 
requests, each for a single core, in our evaluation environment. 
The on-demand user workload requests a total of 56 individual 
VMs over the course of the evaluation. Finally, we terminate 
the evaluation shortly after the overlapping Condor trace 
completes. 

Both workloads submit individual and independent requests; 
each request is for a single core. In the Condor workload the 
jobs simply consist of a program that sleeps for the desired 
amount of time. In the on-demand workload VMs are started 
and run for the appropriate duration. Backfill VMs are capable 
of executing 8 jobs concurrently across the 8 cores in a backfill 
VM, while individual on-demand user requests are single-core 
VMs. RAM is divided evenly among the VMs.  

B. Understanding System Behavior 
To understand the system behavior we compare three 

different scenarios. The first scenario only considers the on-
demand user workload; the number of cores used in this 
workload is shown in Figure 2. In this case the IaaS cloud 
achieves an average utilization of 36.36%, shown in Figure 5, 
with a minimum utilization of 0% and a maximum utilization 
of 43.75%.  

The second scenario simply involves running the Condor 
workload on all 16 VMMs (128 cores) without the on-demand 
user workload. In this case the entire Condor workload 
completes in approximately 84 minutes (5042 seconds), as 
shown in Figure 3. 

In the third scenario the Condor workload is overlaid with 
the on-demand user workload. The Condor workload takes an 
additional 11 minutes and 45 seconds over the case where 
Condor has exclusive access to the resources, completing in 
approximately 96 minutes (5747 seconds), as shown in Figure 
4. However, the utilization of the cloud infrastructure, shown in 

 
Figure 5.  IaaS cloud infrastructure utilization without backfill VMs, only 

running on-demand user VMs. 

 
Figure 6.  IaaS cloud infrastructure utilization with on-demand user VMs 

and backfill VMs processing Condor jobs. 

 
Figure 7.  Condor job queued time when the job first begins executing, 

using the most recent backfill termination policy. 

 
Figure 8.  Condor job queued time when the job begins executing for the 

last time before successful completion, using the most recent backfill 
termination policy. 



Figure 6, increases to an average utilization of 83.82% with a 
minimum utilization of 0% and a maximum of 100%. As the 
Condor jobs complete (just before 6000 seconds in the 
evaluation) utilization again drops because the IaaS cloud is no 
longer running Condor jobs in addition to on-demand user 
VMs.  

The large increase in utilization is due to the fact that the 
cloud infrastructure is no longer solely dedicated to servicing 
on-demand user VM requests, instead the cloud infrastructure 
is also able to process jobs from a Condor workload without 
compromising its ability to service on-demand VM requests. 
The increase in utilization is dependent upon the amount of 
work in the HTC workload. Naturally, longer and more HTC 
jobs will translate into higher utilization.  

While increased utilization certainly benefits the cloud 
provider, Figure 4 also demonstrates that it is advantageous to 
HTC workloads. The workload, which originally takes 
approximately 85 minutes on the same dedicated hardware 
(Figure 3), is only delayed by 11 minutes and 45 seconds 
(completing in just under 96 minutes) when on-demand user 
VMs are introduced into the system as shown in Figure 4. 
However, presumably the cost of utilizing backfill nodes would 
be lower than utilizing dedicated on-demand user VMs since 
backfill VMs may be reclaimed by the cloud provider without 
warning. 

C. Understanding System Performance 
To understand how the IaaS cloud environment and backfill 

solution impacts on-demand users and HTC users we again 
consider the three different scenarios. The first scenario 
involves the on-demand user workload. The second scenario 
involves Condor jobs running on the 16 VMM nodes without 
interruption from on-demand user VMs and the third scenario 
overlays the first two. 

In Figure 7 we can see that the Condor first queued time is 
smallest when no user VMs are present, i.e., if Condor is 
allowed exclusive access to its own hardware for executing 

jobs. Enabling backfill and introducing user VMs causes an 
increase in the Condor first queued time because there are 
fewer backfill VMs processing Condor jobs since on-demand 
user VMs are also running. 

When backfill is enabled there is a noticeable increase in the 
amount of time that Condor jobs are delayed until they finally 
begin executing before successful completion, as seen by the 
numerous spikes for individual Condor jobs in Figure 8 (of 
which there are a total of 48). These 48 jobs actually first begin 
executing much earlier, as seen by the absence of spikes in 
Figure 7. These jobs are delayed because of the arrival of the 
on-demand VMs, which cause the termination of backfill VMs, 
preempting the running Condor jobs. Of the 48 jobs that are 
preempted the average amount of additional time these jobs are 
delayed (before they begin executing for the final time) is 627 
seconds with a standard deviation of 76.78 seconds; the 
minimum amount of extra time that a job is delayed is 273 
seconds and the maximum is 714 seconds. The 48 preempted 
jobs spent a total of 22,716 CPU seconds processing the 
Condor workload before they were preempted. The entire 
Condor workload required a total of 355,245 CPU seconds. 
Thus, for our experimental traces, the use of a backfill-enabled 
IaaS cloud resulted in an additional 6.39% of overhead for the 
Condor workload. 

Figure 9 demonstrates the impact that backfill has on on-
demand user requests. When backfill is disabled all on-demand 
user requests are handled in 2 seconds or less. However, when 
backfill is enabled the amount of time to respond to an on-
demand user request can be as high as 13 seconds, though the 
majority more closely match the case where backfill is 
disabled. The large delay in response time is when the Nimbus 
service must terminate (via clean shutdown) backfill VMs in 
order to service the on-demand user request. Additionally, 
because the evaluation environment consists of 8-core nodes 
with backfill VMs consuming all 8 cores, whenever a backfill 
VM is terminated to free space for an on-demand user VM 
(even if the on-demand user request is only for a single core), 
the remaining cores on the VMM node remain idle and freely 
available for future on-demand user VMs. 

While this evaluation is based on two real workload traces, 
one can imagine that under some of the possible workloads, 
backfill VMs may be more or less beneficial to IaaS cloud 
providers and HTC users. Certain workloads, environment 
characteristics, and backfill termination policies will 
undoubtedly lend themselves as more beneficial to one 
community over the other. This is something we will consider 
in future work. However, our backfill solution and evaluation 
demonstrates that when considering a realistic on-demand user 
workload trace and a realistic Condor workload trace, a shared 
infrastructure between IaaS cloud providers and an HTC job 
management system can be highly beneficial to both IaaS cloud 
provider and HTC users by increasing the utilization of the 
cloud infrastructure (thereby decreasing the overall cost) and 
contributing cycles that would otherwise be idle to processing 
HTC jobs.  

 
Figure 9.  Nimbus service response time for on-demand user VM 

requests. This is the time from when the Nimbus service first receives the 
request until the service responds. It includes the time required to 

terminate backfill VMs (when applicable), however, it does not include 
the time for a user VM to boot. 



V. RELATED WORK 
Although our work utilizes backfill to achieve high 

utilization of an IaaS infrastructure, it is different from work 
that uses backfill scheduling to increase the utilization of large 
supercomputers [7]. Scheduling on supercomputers does not 
typically assume that backfill jobs will be preempted by an on-
demand request, seeking to immediately access the resources, 
while our work assumes this to be the default case. Instead, 
these backfill scheduling algorithms only attempt to backfill 
unused resources with requests that match the available slots 
both in their resource needs as well as their expected runtime. 
There are, however, preemption based backfill solutions [22] 
that share many similar characteristics to our work. The major 
exception is their focus on queue-based supercomputers and 
our focus on IaaS cloud infrastructures. 

Volunteer computing systems, such as BOINC [2], harvest 
cycles from idle systems distributed across the Internet. Major 
examples of volunteer applications include SETI@Home [2] 
and Folding@Home [11]. These applications are designed to 
accommodate interruptions in service since widely distributed 
computers, operated by a seemingly infinite number of 
disparate users, cannot provide any guarantee of service. In the 
case of volunteer computing systems interruptions in service 
are usually the result of users returning to their systems to do 
work, systems crashing, or systems becoming disconnected 
from the Internet. Much research on volunteer computing 
focuses on the usefulness, efficiency, and failure prediction of 
these volatile environments [1], [3], [18], [19]. Our work 
focuses on providing cycles within an IaaS infrastructure that 
would have otherwise been idle to other processes, such as 
HTC or volunteer computing, where the services may be 
interrupted by the arrival of requests for on-demand VMs. 
Applications that leverage volunteer computing systems would 
be ideal candidates for backfill VMs because of their ability to 
handle unexpected failures in service. 

In [23] we also leverage recovery techniques, specifically 
suspending and resuming VMs, to achieve high utilization of 
IaaS cloud infrastructures. While the goal of maintaining high 
utilization via introducing different types of leases is the same 
as the work described here, the leases themselves as well as the 
recovery technique used, specifically that of suspending and 
resuming VMs, is different from the focus in our work. Instead 
of using suspend/resume to support advanced reservations we 
leverage a recovery system that uses resubmission (Condor) to 
ensure that high utilization is achieved and no work is lost. 

Another area that shares related themes to our work is spot 
pricing, as exemplified by Amazon [2]. With spot pricing users 
place bids for instances and the cloud provider periodically 
adjusts the price of spot instances, terminating the spot 
instances with bids that fall below the new spot price and 
launching instances that meet or exceed the spot price. Our 
work uses the current demand for on-demand user VMs to 
determine the availability for backfill VMs while Amazon 
bases availability of spot instances on a spot price. 

VI. FUTURE WORK 
The backfill implementation used in this paper was an 

initial prototype created to demonstrate of the usefulness of 

combining IaaS cloud infrastructure resources with other 
purposes, such as HTC, through backfill VMs. The prototype 
implementation used in this work is publicly available on 
GitHub [15]. The 2.7 release of the Nimbus toolkit [16] 
includes the official release of the backfill implementation. In 
the 2.7 release backfill instances are essentially zero-cost spot 
instances that have a lower priority than on-demand instances 
and spot instances. Therefore, backfill instances are 
preemptible by both on-demand requests and spot requests. 

The future work opens up the opportunity to explore 
different variants of the policies described in Section II. For 
instance, exploring finer granularity with which to deploy 
VMs, optimizing the backfill image deployment method, as 
well as termination policies. Another possible area for future 
work is suspending backfill VMs instead of terminating them. 
Such a solution may be ideal for a backfill application that does 
not leverage resubmission as its recovery mechanism. 

Another set of challenges arises if we broaden the definition 
of the preemptible lease, e.g., by removing the assumption that 
only one type of backfill VMs may be used or that only the 
administrator can configure backfill VMs. One simple 
refinement would be for the administrator to define multiple 
backfill VMs and have policies on how backfill resources are 
shared among them (e.g., what percentage of available cycles 
should be devoted to each). However, if users are to submit 
backfill VMs (i.e., the preemptible lease as defined in this 
paper would no longer be “fixed”) some arbitration mechanism 
needs to be defined for deciding between various user/instance 
requests. For example, AWS uses auctions to make such 
decisions (i.e., spot instances) but many other mechanisms 
could also be explored. Additionally, we could also consider 
different types of leases, e.g., to provide for the impact of 
backfill VMs on parallel jobs where all processes for a single 
parallel job must be available.  

Another set of challenges arises out of exploring various 
aspects of resource utilization, energy savings, cost and pricing. 
An assumption throughout this paper has been that improving 
utilization is advantageous because it leads to better resource 
amortization and thus lower costs per computation cycle. This 
need not necessarily be so: green computing techniques 
allowing providers to power down a proportion of resources 
[12] may be a better option in some cases, and prices obtained 
by auction need not necessarily be sufficient to amortize cost. 
A more thorough model taking into accounts these factors 
would be needed.  

VII. CONCLUSIONS 
In this paper we propose a cloud infrastructure that 

combines on-demand allocation of resources with opportunistic 
provisioning of cycles from idle cloud nodes to other processes, 
such as HTC, by deploying backfill VMs. We extend the open 
source Nimbus IaaS toolkit to deploy backfill VMs on idle 
cloud nodes.  

We evaluate the backfill solution using an on-demand user 
workload and an HTC workload. We find backfill VMs 
contribute to an increase of the utilization of the IaaS cloud 
infrastructure from 37.5% to 100% during a portion of the 
evaluation trace but result in only 6.39% additional overhead 



for processing the HTC workload. Additionally, backfill VMs 
make available cycles that would have otherwise been idle to 
assist in processing HTC jobs. In particular, a Condor workload 
that originally completes in approximately 85 minutes on 
dedicated hardware is only delayed by 11 minutes and 45 
seconds (completing in just under 96 minutes) when on-
demand user VMs are introduced into the system. 
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