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ABSTRACT 

Infrastructure cloud computing introduces a significant paradigm 
shift that has the potential to revolutionize how scientific 
computing is done. However, while it is actively adopted by a 
number of scientific communities, it is still lacking a well-
developed and mature ecosystem that will allow the scientific 
community to better leverage the capabilities it offers. This paper 
introduces a specific addition to the infrastructure cloud 
ecosystem: the cloudinit.d program, a tool for launching, 
configuring, monitoring, and repairing a set of interdependent 
virtual machines in an infrastructure-as-a-service (IaaS) cloud or 
over a set of IaaS clouds. The cloudinit.d program was developed 
in the context of the Ocean Observatory Initiative (OOI) project to 
help it launch and maintain complex virtual platforms provisioned 
on demand on top of infrastructure clouds. Like the UNIX init.d 
program, cloudinit.d can launch specified groups of services and 
the VMs in which they run, at different run levels representing 
dependencies of the launched VMs. Once launched, cloudinit.d 
monitors the health of each running service to ensure that the 
overall application is operating properly. If a problem is detected 
in a service, cloudinit.d will restart only that service and any other 
service that failed that depended on it. 
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1. INTRODUCTION 
Infrastructure-as-a-service (IaaS) cloud computing [1] 

(sometimes also called “infrastructure cloud computing”) has 
recently emerged as a promising outsourcing paradigm that has 
been widely embraced commercially and is also beginning to 
make inroads in scientific communities. Infrastructure clouds 
allow users to exercise control over remote resources by 
introducing a virtualization layer that ensures isolation from the 
provider’s infrastructure and thus a separation between provider’s 
hardware and the user’s environment. This feature proves 

particularly attractive to scientific communities where control 
over the environment is critical [2]. Furthermore, by providing 
on-demand access, cloud computing becomes an attractive 
solution to applications that are deadline-driven (e.g., 
experimental applications) or require urgent computing [3] 
capabilities.  

Although many scientific projects are actively taking 
advantage of cloud computing, the development of its ecosystem 
is still in its infancy. The requirements for tools enabling 
platform-independent computing [4, 5], contextualization [6],  
elastic computing [7], or offering other functionality providing 
easy access to cloud facilities to the end user are still being 
developed. As cloud computing became more popular, the 
applications used in the cloud exceeded the basic need to deploy a 
few images and run a simple application. Sophisticated launches 
often contain additional service nodes including storage, 
databases, identity servers, brokers, and other support services. 
Further, while infrastructures serving local communities are often 
built or modified in a matter of months or years by a consistent 
team, a complex cloud launch may be repeated many times a day 
by several different people.  

These considerations create a need for a tool enabling a 
controlled and repeatable launch and management of a set of 
virtual machines (VMs) working together to achieve a single goal.  
This task is often challenging because little can be assumed about 
the network locations of these VMs (their IP addresses are 
dynamically provisioned), they are frequently interdependent on 
each other, and their deployment can be spread across many 
different clouds providers, potentially supporting different 
interfaces. Specifically, the following questions arise: How can we 
orchestrate large-scale, multicloud, and multi-VM application 
launches? How can we organize, manage, and coordinate the 
bootstrap process of these complex cloud applications in a 
repeatable way?  Once these applications are running, how can we 
ensure that they continue to work, and can we recover from 
failures without having to waste valuable time and potential data 
by completely restarting them? 

In this paper, we introduce cloudinit.d, a tool for launching, 
configuring, monitoring, and repairing a set of interdependent 
VMs in an IaaS cloud or over a set of IaaS clouds. A single 
launch can consist of many VMs and can span multiple IaaS 
providers, including offerings from commercial and academic 
space such as the many clouds offered by the FutureGrid project 
[14]. Like the UNIX init.d program, cloudinit.d can launch 
specified groups of VMs at different run levels representing 
dependencies of the launched VMs. The launch is accomplished 
based on a well-defined launch plan. The launch plan is defined in 
a set of easy-to-understand text-based ini formatted files that can 
be kept under version control. Because the launch process is 
repeatable, cloud applications can be developed in a structured 
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and iterative way. Once launched, cloudinit.d monitors the health 
of each running service and the VMs in which they run. If a 
problem is detected in a service, cloudinit.d will restart only that 
service (and potentially its hosting VM) and the dependencies of 
that service which also failed. Cloudinit.d was developed in the 
context of the Ocean Observatory Initiative project [8] to 
coordinate and repair launches of VMs and services hosted by 
both VMs and bare metal machines. 

This paper is structured as follows. In Section 2 we define 
the requirements and design principles guiding the development 
of cloudinit.d. In Section 3 we describe its architecture and 
implementation. In Section 4 we present an application example 
and review the design features based on this example. In Section 5 
we discuss related efforts. We summarize our conclusions in 
Section 6. 

2. REQUIREMENTS AND GOALS 
Based on our experience involving launches of scientific 
applications in the clouds [14] as well as the experiences of 
complex launches within the Ocean Observatory Initiative (OOI) 
project [8], we have developed a set of requirements and goals for 
an infrastructure cloud-friendly launch tool. One important insight 
was that the tool should be able to not only launch complex sets 
of interdependent VMs but also diagnose failure as appropriate 
and keep the VMs running if possible. These guidelines are 
summarized below:  

• Repeatable, one-click deployment of sets of VMs. 
Outsourcing to infrastructure clouds often includes 

support servicessuch as storage, databases or identity 

serversforming a complex network. Further, those 
networks of services can be deployed and redeployed in 
the cloud frequently and by different actors. In order to 
achieve consistent behavior of such systems, it is 
important to execute VM launches based on a launch 
plan that can be created once and executed many times, 

by different actors, in exactly the same way. The 
execution of this requirement is limited by the degree of 
repeatability provided by IaaS providers: in many cases 
it is impossible to repeat individual deployment actions; 
for example, a deployment of an instance on the 
Amazon Web Services (AWS) provider [9] may result 
in many different instantiations [10].  

• Coordination of interdependent launches. The services 
within one launch can be interdependent in that 
information required for the deployment of one can be 
provided as a result of the deployment of another. For 
example, a service may need to know the hostname of a 

database server to complete its launch sequencein this 
case the database server needs to be deployed first, and 
the information about the hostname needs to be 
conveyed. On the other hand, services can also be 
independent and in this case can be deployed 
concurrently to save time. Dividing the service launch 
into run levels composed of independent services 
accommodates both scenarios; each run level can define 
and resolve attributes to values that can be used by 
services launched in downstream run levels. 

• Federated cloud deployment scenario. Many 
deployments move between different cloud providers, 
use several different providers for one launch [24], or 

use both cloud and noncloud resources [25]. Thus, any 
launch management tool for infrastructure clouds 
should be platform-agnostic so that it can be deployed 

on any IaaS cloud as well as integrate noncloud 

resources. In order to achieve portability and flexibility 
it is important not only to work with multiple providers 
but also to launch different VMs on different clouds 
with a single launch plan. This can be achieved by using 
adapters, such as libcloud [5] or deltacloud [4] that 
provide a bridge to many IaaS cloud providers and 
services, or by leveraging the increasing availability of 
standards such as the specification recently released by 
Open Grid Forum’s Open Cloud Computing Interface 
(OCCI) [11]. Launching services on noncloud resources 
can be accomplished by accessing the resource and 
configuring the service; however, launching them on a 
VM has the advantage that the environment is known 
and controlled by the user and thus carries the risk of 
fewer potential failures and inconsistencies.  

• Testing a launch. To deal with complex launches in a 
structured way and be able to reason about a complex 
system, a user must be able to make and verify 
assertions about vital properties of the system. Those 
assertions can be both generic (e.g., “Is the VM 
responding to pings”?), and user-defined (e.g., testing 
an application-specific property of a system). For this 
reason, it is important that the user can define arbitrary 
soundness tests for the system. Management tools for 
infrastructure clouds should thus provide mechanisms 
that allow users to select or configure such tests, 
associate them with services, and execute them to 
validate the correctness of a launch both at deployment 
time and running time. In order to ensure meeting a 
wide range of useful tests, they should be executed 
inside the VMs (e.g., based on ssh into the VM), rather 
than rely on external information only.  

• Ongoing monitoring of a launch. In order to closely 
monitor the health of the system, it is essential that the 
vital assertions about the system can be reevaluated at 
any time. Therefore, if such assertions are embedded in 
the launch tests, those tests need to be able to be rerun 
not just at launch but at any time by an action triggered 
automatically or manually by the user (i.e., launch 
operator). It should be possible to store the results of 
monitoring tests in a database for launch analysis and 
recreation. 

• Policy-driven repair and maintenance of a launch. If 
any of the assertions about the system (as embodied by 
the tests) fail, it should be possible to repair the launch 
components by applying a repair action defined by a 
policy. For example, a failure can lead to a number of 
repeats of a launch action or abandonment of a launch 
component or even the whole launch if a component is 
deemed to be irreparable. 

• Lightweight and easy to use. In a cloud scenario, where 
multiple users are building, sharing, and improving 
complex launch plans on a daily basis, a launch tool that 
is complex, has a learning curve, and requires 
configuration is only exchanging one type of complexity 
for another. In such an environment a launch plan has to 



operate based on an easily copied launch plan and a 
“one-click” action. Therefore, while it is tempting to 
provide a more general system that can be customized to 
this particular task, the launch tool must be purpose-
specific and spare in terms of functionality. Further, for 
ease of use, a minimum of software should be required 
to be preinstalled and running on a host system. Often 
configuration management tools require that an agent be 
custom installed and run. This requirement makes it 
impossible to use the multitude of freely and readily 
available Linux VM image distributions without having 
to rebundle the VM images. Rebundling VM images 
can be a difficult task for all but the most advanced 
users. 

3. ARCHITECTURE AND 

IMPLEMENTTATION 
We discuss in this section the architecture of cloudinit.d and its 
implementation. 

3.1 Launch Plans 
Cloudinit.d arranges an application into three basic 

constructs: atomic service, run level, and launch plan.  
 

 
 

Figure 1: Launch plan example shows relationships between 

components: the first run-level contains all the services 

without dependencies as well as services that run-level 2 

depends on; run-level 3 depends on run-level 2. 

• A service is an entity confined to a single host machine 
and responsible for a well-defined task. A service can be 
hosted by a VM that is automatically launched by 
cloudinit.d or by an existing machine that is accessible 
via ssh. Many services can be configured to run in a 
single host, but often a service is associated with a VM 
dedicated to its needs. One may think of a service as a 
newly launched and configured VM with a single, 
dedicated purpose. Examples of services are an HTTP 
server, a node in a Cassandra [12] pool, or a node in a 
RabbitMQ [13] message queue.  

• A run level is a collection of services with no 
dependencies on each other. All services in a run level 

can be launched at the same time.  A run-level launch is 
considered complete when all of the services in it have 
successfully started. Services in a run level can be run 
on one single cloud or across many different clouds, 
since cloudinit.d makes no assumptions about locality. 
Any service in a run level can depend on any service 
from a previous run level. For example, run-level 1 
forms a database. A web application in run-level 2 can 
depend on that database, meaning, it can acquire all of 
the information needed to connect to it, like security 
tokens and contact port, dynamically at boot time. 

• A launch is an ordered set of run levels. To make a 
launch plan, first one defines all the services. Then 
those services are arranged into run levels  in a specific 
order: the services with no dependencies are put in run-
level 1 since they all can be started simultaneously 
without any additional information, the next run level is 
composed of services with dependencies on level 1 
only, and so forth. The completed launch forms a 
complete cloud (or intercloud) application. 

Figure 1 shows an example of services collected into run 
levels; the arrows show the dependencies of one service on 
another. When a service needs information from another, it 
depends on it and thus must be in a higher run level.  It can 
request dynamic information about another service at boot time or 
repair time. This powerful feature allows the location of any given 
service to be entirely dynamic. We note that a service may depend 
on already running systems not controlled by the launch operator.  
For example, if a service uses Amazon’s S3 [28] as a data store, 
all the information needed to connect with the operators S3 
account can be passed into a service as a first-class part of the 
bootstrap process.  

3.2 Configuring Services 
Two factors determine how a service behaves and how 

cloudinit.d interacts with it: the software preinstalled on the 
service’s host and a collection of scripts defining its startup and 
termination properties as well as its operating assertions. The 
service’s host can be a VM or a bare-metal running machine.  The 
various scripts and their functions are described below: 

• The startup script (bootpgm) is a program that is run 
once at launch time to configure the service. The 
purpose of this program is to set up the host server with 
all needed software and start that software using any 
tools convenient to the user. The program is copied by 
cloudinit.d to a distinct location inside the service’s host 
as soon as ssh access to that host has been verified.  
This strategy minimizes the need for preinstalled 
software to simply sshd and thus maximizes the 
selection of possible resources to use as host systems for 
a service.  The startup agent will often download and 
install software and then configure that software for use.  
Tools such as apt-get[15], yum[16], chef-solo[17], or 
puppet [29] can be used by this script to perform these 
functions: the choice of this implementation technology 
is left to the user, the only constraint being that it must 
be executable by the service’s host.   

• The test script (readypgm) is a program whose purpose 
is to check the status and health of the service. It can be, 
and typically is, run many times during the lifetime of 
an application. When the user of cloudinit.d requests the 
current status of a previously launched cloud 



application the dependency graph of run levels is again 
walked.  This time the test script is copied into the 
service’s host and run via ssh. As an example, if the 
service's goal is to serve HTTP, the readypgm might 
connect to localhost:80, download a known web page, 
and check its content. If all is well, the readypgm 
returns 0, and the service is reported as working. If not, 
the service is marked as down, and the cloud application 
is in need of repair. The output from the readypgm is 
logged in a file local with respect to cloudinit.d so that 
the user can inspect the results of a failed service for 
more details.  

• The termination script (terminatepgm) is a program run 
when a service is shut down. It is there to nicely clean 
up resources associated with the service.  For example, 
a service that has data kept in memory buffers can use 
this hook to make sure all buffers are flushed to a 
permanent store. 

Both the software installed on the various services host 
systems and the scripts described above provide a baseline for the 
capabilities of the service and are defined by the author of the 
launch plan (and thus the author of the service).   

3.3 Boot Process 
Here we describe how a single service is brought into 

existence by cloudinit.d. First, a launch plan is created that 
describes a cloud application with functionality arranged into the 
components described above; this launch plan is given to the 
cloudinit.d command line program. The first action cloudinit.d 
takes is to validate that the launch plan has no errors. Launch 
plans tend to require the acquisition of  VM resources, and this 
acquisition is often costly in terms of time and money; thus we 
want to avoid the case where the first nine run levels pay the 
price, only to discover a bug in the launch plan in level 10.   

Once the plan is validated, all IaaS requests for new VMs are 
made. We prestage this request as an optimization: starting a new 
VM can take a significant amount of time, and many tasks can be 
done in parallel. 

Then cloudinit.d starts monitoring the services at run-level 1, 
first waiting for the IaaS system on which any VM on that level 
was launched to report an associated hostname. Once a hostname 
is present, cloudinit.d repeatedly, but not aggressively, attempts to 
contact the service’s host. Contact is made by attempting to ssh 
into the system. When a successful ssh connection is made, the 
bootpgm is copied to a distinct location via scp. In higher run 
levels where there is a possible service dependency, an additional 
document that contains dependency information about all 
previously created services (currently expressed in json[18]) is 
copied to the service’s host. The bootpgm script is then run inside 
that host. It can use the information in the dependency document 
for discovering values about its dependencies from services at 
lower run levels. As described above, this script is responsible for 
setting up the service for use in the cloud application. If it is 
successful, it must have an exit code of 0. 

Along with the exit code, the bootpgm can return a 
dependency document containing a set of key/value pairs that 
describe attributes of the newly configured service for 
consumption by higher-level services. For example, an HTTPS 
service may want to return the public key that it generated at boot 
time so that higher-level services can safely access it. This 

document is used by cloudiit.d to furnish services at higher run 
levels with dynamic information about this newly created service. 

Once all the services at a run level have completed 
successfully, the process is then performed on the next run level 
until all run levels have completed. 

3.4 Security Considerations 
The operator of cloudinit.d must have ssh private keys that 

allow access to all service hosts in the cloud application. When 
dealing with IaaS clouds (typical with cloudinit.d) this is not a 
problem. Ssh key management is a first-class feature with all IaaS 
clouds, and there is a well-understood process for managing keys.  
When the service’s host is a static machine, the operator must 
make sure that the machine can be accessed via ssh in order to use 
it with cloudinit.d. Various configuration options in the launch 
plans handle the nuances of this situation. 

The operator will also need to have access tokens for any and 
all of the IaaS clouds from which resources will be requested. The 
details of those keys are associated with the launch plan and are 
described in later sections. 

We note that the operator of a cloudinit.d (i.e., the account 
that launched the boot plan) should be considered the root-level 
user of the application. This operator will have root access to all 
IaaS-launched VMs and will often need root-level access to the 
static system. Further, the cloudinit.d operator has the power to 
terminate the application. As part of the launch or once the cloud 
application has been launched, lower-level access can be granted 
in an application-specific way, but the owner and operator of the 
launch plan will be the root-level user. 

3.5 Repair 
In any distributed system, failures are inevitable.  In complex 

cloud applications, diagnosing and repairing single failures can be 
an arduous task. System failures are detected by cloudinit.d by 
running the test script, readypgm, inside the service’s host 
machine. The user can manually decide when to check the status 
of an application with the cloudinit.d command-line program or 
the cloudinit.d python API.  If the readypgm returns a failure on a 
given service, that service can be automatically repaired. 

The repair process works by first running the terminatepgm 
(if it exists) and then shutting down the VM hosting the service if 
necessary. The boot process described above is then run on that 
service alone. In this reboot many of the dynamically determined 
attributes of this service (e.g., hostname) will likely change.  
Hence, once the reboot is complete, cloudinit.d will test all the 
services at a higher level. If any of those services fail, they too 
will be repaired in this way, propagating the repair up the levels.  

4. APPLICATION EXAMPLE 
Figure 2 shows an example cloud application run on four of 

the FutureGrid clouds using cloudinit.d. Here we have a highly 
available web application that uses a Cassandra distributed 
database for highly available storage, Apache HTTP servers for its 
web application, and a load balancer to distribute the work. To 
avoid a single point of failure and to ensure locality, each node of 
both the Cassandra database and the web farm is distributed 
geographically across all four clouds. The load balancer is run on 
a single static host with a known location. As part of our launch 
plan in this example, we will tell cloudinit.d how to contact each 
of the four clouds and that we want two VMs in each cloud, one 
to handle the workload of Cassandra and a second to handle the 
web requests.  In total the application will have eight VMs (two in 
each cloud) and one static machine.  



 
Figure 2: Example application using cloudinit.d deployed on 

FutureGrid Nimbus clouds. 

4.1 Booting and Configuring a Single 

Instance 
The launch plan for this application has three run levels. The 

first has the four Cassandra nodes as services configured to run in 
each of the four FutureGrid clouds. The second is a set of 
replicated HTTP servers, configured similarly. The final run level 
is the load balancer, which is run on a bare-metal host that is 
assumed to be running prior to the boot of this application. The 
plan is configured in such a way as to route the important 
connection information from the Cassandra cluster to each HTTP 
server. Similarly, the list of HTTP servers is sent to the load 
balancer once run-level 2 completes. 

As input, cloudinit.d takes a set of configuration files. To 
provide a practical understanding of how to create a working 
launch plan, we describe its details here. The launch plan has two 
main file types: a top-level configuration file and a run-level 
configuration file.  We chose the ini style file format here because 
the description needs are simple and limited to key/value pairs.  A 
feature-rich, yet harder to read and understand description 
language like XML or JSON would make the launch plan author’s 
job unnecessarily complicated. The top-level configuration file 
simply enumerates the run levels and associates each run level 
with an additional configuration file. Our example top-level 
configuration file follows. 

 
 [runlevels] 
 level1: cassandra.conf 
 level2: http.conf 
 level3: loadbalance.conf     

This tells cloudinit.d that there are three run levels and where 
the description of those run levels can be found.  Inside each of 
those files is a description of each service. 

Here we will just introduce the service section of the boot 
level configuration file that describes the Cassandra service that 
will be run on the FutureGrid sierra cloud. 

 
 [svc-sierraCassandra] 
 iaas_key: XXXXXX 
 iaas_secret: XXXX 
 iaas_hostname: sierra.futuregrid.org 
 iaas_port: 8443 
 iaas: Nimbus 

 
 image: ubunut10.10 
 ssh_username: ubuntu 
 localsshkeypath: ~/.ssh/fg.pem 
 readypgm: cass-test.py 
 bootpgm: cass-boot.sh 

The first five entries describe the cloud on which the service 
will be created. User security tokens and the contact point of the 
cloud are placed here. Cloudinit.d is also told what type of cloud 
has been described. In this case it is Nimbus, but it could be other 
common cloud types such as EC2 [19] or Eucalyptus [20]. 

The line image: ubuntu10.10 is a directive saying to request 
that the IaaS cloud launch the image with that name. In our 
example the image is a base Ubuntu 10.10 image. Both 
ssh_username and localsshkeypath give cloudinit.d the needed 
information for establishing a communication link with the VM 
instance launched from the ubuntu10.10 image. 

Readypgm and bootpgm point to scripts that perform the 
tasks associated with the respective directives (described in detail 
above). In our case cass-boot.sh will be copied to the VM instance 
with scp. The ssh session will be formed using the key at 
localsshkeypath and the username ubuntu.  Then cass-boot.sh will 
be run via ssh as the ubuntu user. It will download all the software 
needed for Cassandra to run and configure this node to be a 
member of the four-node cluster. When it is complete, it will 
return to cloudinit.d the contact information of the newly created 
Cassandra node.  A similar entry is made in cassandra.conf for the 
other clouds.   

Once all four Cassandra services have been successfully 
booted, cloudinit.d will open the configuration file http.conf.  The 
contents of this file will look similar to that of cassandra.conf, the 
main difference being the bootpgm used to configure the system.  
Again four new VMs will be started on each of the four clouds.  
Cloudinit.d will again ssh into these machines and stage in the 
configuration scripts. Instead of setting up Cassandra, however, 
the bootgm will download, install, and configure a web server. 
Furthermore, it will connect to the Cassandra data store created in 
the previous boot level. 

The final step in our example application is setting up the 
load balancer.  In this case the host machine will not be a VM.  
Instead it will be a static machine at a given hostname. The 
process for configuring it works in almost an identical way, only 
without the initial request to an IaaS framework to start a VM.  
That first step is skipped, and the process continues by accessing 
the given hostname with scp and ssh.  Because there are no further 
run levels, once this run level successfully completes, details 
about each started service are reported to a log file, and a 
summary is reported to the console for immediate observation by 
the operator. 

5. RELATED WORK 
CloudFormation [21] is a product created by Amazon Web 

Services. Much like cloudinit.d, it is used to create and operate 
distributed applications in the cloud in a predictable and 
repeatable way. Unlike cloudinit.d, however, CloudFormation 
cannot be used across many clouds;  it is a tool entirely dedicated 
for use with AWS only and cannot be used with the many 
resources available in science clouds or other commercial clouds.  
A further and important difference between the two systems is that 
cloudinit.d is designed to boot and contextualize an ordered 
hierarchy of VMs. CloudFormation is designed specifically to 
make all the AWS services (like SQS [22] and Elastic Beanstalk 
[23]), work in concert with each other; it does not do VM 



contextualization, and it does not have an explicit notion of boot 
order. 

Configuration management systems such as puppet and chef 
are designed to manage the configuration of systems declaratively. 
Much like cloudinit.d, they can set up and maintain services on a 
set of systems typically in a cluster. However, unlike cloudinit.d, 
the systems on which they are run require that existing software 
agents be installed and running on all systems in their cluster. In 
contrast, the only initial dependency that cloudinit.d has is the 
ubiquitous sshd. This allows cloudinit.d to work with base images 
readily available on virtually every cloud and does not require the 
user to bundle a special image. For example, Ubuntu images are 
regularly released on EC2 for public use (as are many other Linux 
distributions). Furthermore, far from being a competitor of 
configuration management systems, cloudinit.d is  designed to 
work with them.  In best practices cloudinit should be used to 
provision a host with all of the software, security information, and 
configuration files needed to properly run a configuration 
management system such as chef solo (as demonstrated in our 
example). 

The Context Broker [30] from the Nimbus project is a 
service that allows clients to coordinate large virtual cluster 
launches and created the concept of the one-click virtual cluster.  
While cloudinit.d handles one-sided configuration dependencies 
between services, the Context Broker is capable of handling more 
complex interdependencies with additional complexity cost. 
Furthermore, while the Context Broker focuses exclusively on 
configuration management of VMs provisioned by another agent, 
cloudinit.d bundles configuration management with provisioning 
resources across multiple clouds. Wrangler [31] is a recent 
research project providing functionality similar to the Context 
Broker, with similar trade-offs.  

Claudia is an open source service manager originally 
affiliated with the One Nebula project but now absorbed by 
Stratus Cloud. Claudia is more tightly coupled to IaaS services 
and the management of VMs than is cloudinit.d is. Further, its 
architecture has several running components and thus presents a 
much more complex and heavyweight solution than does 
cloudinit.d. 

6. SUMMARY 
This paper introduces cloudinit.d, a tool for launching, 

configuring, monitoring, and repairing a set of interdependent 
VMs in an infrastructure-as-a-service (IaaS) cloud or over a set of 
IaaS clouds. In addition, similar to its namesake the UNIX init.d 
program, cloudinit.d can launch specified groups of VMs at 
different run levels representing dependencies of the launched 
VMs. This feature facilitates dealing with interdependencies with 
VM while optimizing the launch by allowing independent VMs to 
launch at the same time.  

Cloudinit.d provides a new addition to the cloud computing 
ecosystem, making it easier for scientists to repeatedly launch, 
manage, and reason about sets of VMs deployed in he cloud. The 
capability to deploy launches repeatably is particularly important 
in the construction of stable system; and the ability to evaluate, at 
any time, application-specific assertions significantly simplifies 
VM launches in cloud environment.  
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