
Managing Appliance Launches in Infrastructure Clouds
John Bresnahan

Mathematics and Computer
Science Division

Argonne National Laboratory

bresnahan@mcs.anl.gov

Tim Freeman
Computation Institute
University of Chicago

freeman@mcs.anl.gov

David LaBissoniere
Computation Institute
University of Chicago

labisso@uchicago.edu

Kate Keahey
Mathematics and Computer

Science Division
Argonne National Laboratory

Computation Institute
University of Chicago

keahey@mcs.anl.gov

ABSTRACT

Infrastructure cloud computing introduces a significant paradigm
shift that has the potential to revolutionize how scientific
computing is done. However, while it is actively adopted by a
number of scientific communities, it is still lacking a well-
developed and mature ecosystem that will allow the scientific
community to better leverage the capabilities it offers. This paper
introduces a specific addition to the infrastructure cloud
ecosystem: the cloudinit.d program, a tool for launching,
configuring, monitoring, and repairing a set of interdependent
virtual machines in an infrastructure-as-a-service (IaaS) cloud or
over a set of IaaS clouds. The cloudinit.d program was developed
in the context of the Ocean Observatory Initiative (OOI) project to
help it launch and maintain complex virtual platforms provisioned
on demand on top of infrastructure clouds. Like the UNIX init.d
program, cloudinit.d can launch specified groups of services and
the VMs in which they run, at different run levels representing
dependencies of the launched VMs. Once launched, cloudinit.d
monitors the health of each running service to ensure that the
overall application is operating properly. If a problem is detected
in a service, cloudinit.d will restart only that service and any other
service that failed that depended on it.

General Terms

Management, Design, Experimentation.

Keywords

Cloud computing, Infrastructure-as-a-service, Platform-as-a-
service, Nimbus.

1. INTRODUCTION
Infrastructure-as-a-service (IaaS) cloud computing [1]

(sometimes also called “infrastructure cloud computing”) has
recently emerged as a promising outsourcing paradigm that has
been widely embraced commercially and is also beginning to
make inroads in scientific communities. Infrastructure clouds
allow users to exercise control over remote resources by
introducing a virtualization layer that ensures isolation from the
provider’s infrastructure and thus a separation between provider’s
hardware and the user’s environment. This feature proves

particularly attractive to scientific communities where control
over the environment is critical [2]. Furthermore, by providing
on-demand access, cloud computing becomes an attractive
solution to applications that are deadline-driven (e.g.,
experimental applications) or require urgent computing [3]
capabilities.

Although many scientific projects are actively taking
advantage of cloud computing, the development of its ecosystem
is still in its infancy. The requirements for tools enabling
platform-independent computing [4, 5], contextualization [6],
elastic computing [7], or offering other functionality providing
easy access to cloud facilities to the end user are still being
developed. As cloud computing became more popular, the
applications used in the cloud exceeded the basic need to deploy a
few images and run a simple application. Sophisticated launches
often contain additional service nodes including storage,
databases, identity servers, brokers, and other support services.
Further, while infrastructures serving local communities are often
built or modified in a matter of months or years by a consistent
team, a complex cloud launch may be repeated many times a day
by several different people.

These considerations create a need for a tool enabling a
controlled and repeatable launch and management of a set of
virtual machines (VMs) working together to achieve a single goal.
This task is often challenging because little can be assumed about
the network locations of these VMs (their IP addresses are
dynamically provisioned), they are frequently interdependent on
each other, and their deployment can be spread across many
different clouds providers, potentially supporting different
interfaces. Specifically, the following questions arise: How can we
orchestrate large-scale, multicloud, and multi-VM application
launches? How can we organize, manage, and coordinate the
bootstrap process of these complex cloud applications in a
repeatable way? Once these applications are running, how can we
ensure that they continue to work, and can we recover from
failures without having to waste valuable time and potential data
by completely restarting them?

In this paper, we introduce cloudinit.d, a tool for launching,
configuring, monitoring, and repairing a set of interdependent
VMs in an IaaS cloud or over a set of IaaS clouds. A single
launch can consist of many VMs and can span multiple IaaS
providers, including offerings from commercial and academic
space such as the many clouds offered by the FutureGrid project
[14]. Like the UNIX init.d program, cloudinit.d can launch
specified groups of VMs at different run levels representing
dependencies of the launched VMs. The launch is accomplished
based on a well-defined launch plan. The launch plan is defined in
a set of easy-to-understand text-based ini formatted files that can
be kept under version control. Because the launch process is
repeatable, cloud applications can be developed in a structured

(c) 2011 Association for Computing Machinery. ACM acknowledges that this

contribution was authored or co-authored by an employee, contractor or affiliate of

the United States government. As such, the United States Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow

others to do so, for Government purposes only.

TG'11, July 18 - July 21 2011, Salt Lake City, UT, USA

Copyright 2011 ACM 978-1-4503-0888-5/11/07…$10.00.

and iterative way. Once launched, cloudinit.d monitors the health
of each running service and the VMs in which they run. If a
problem is detected in a service, cloudinit.d will restart only that
service (and potentially its hosting VM) and the dependencies of
that service which also failed. Cloudinit.d was developed in the
context of the Ocean Observatory Initiative project [8] to
coordinate and repair launches of VMs and services hosted by
both VMs and bare metal machines.

This paper is structured as follows. In Section 2 we define
the requirements and design principles guiding the development
of cloudinit.d. In Section 3 we describe its architecture and
implementation. In Section 4 we present an application example
and review the design features based on this example. In Section 5
we discuss related efforts. We summarize our conclusions in
Section 6.

2. REQUIREMENTS AND GOALS
Based on our experience involving launches of scientific
applications in the clouds [14] as well as the experiences of
complex launches within the Ocean Observatory Initiative (OOI)
project [8], we have developed a set of requirements and goals for
an infrastructure cloud-friendly launch tool. One important insight
was that the tool should be able to not only launch complex sets
of interdependent VMs but also diagnose failure as appropriate
and keep the VMs running if possible. These guidelines are
summarized below:

• Repeatable, one-click deployment of sets of VMs.
Outsourcing to infrastructure clouds often includes

support servicessuch as storage, databases or identity

serversforming a complex network. Further, those
networks of services can be deployed and redeployed in
the cloud frequently and by different actors. In order to
achieve consistent behavior of such systems, it is
important to execute VM launches based on a launch
plan that can be created once and executed many times,

by different actors, in exactly the same way. The
execution of this requirement is limited by the degree of
repeatability provided by IaaS providers: in many cases
it is impossible to repeat individual deployment actions;
for example, a deployment of an instance on the
Amazon Web Services (AWS) provider [9] may result
in many different instantiations [10].

• Coordination of interdependent launches. The services
within one launch can be interdependent in that
information required for the deployment of one can be
provided as a result of the deployment of another. For
example, a service may need to know the hostname of a

database server to complete its launch sequencein this
case the database server needs to be deployed first, and
the information about the hostname needs to be
conveyed. On the other hand, services can also be
independent and in this case can be deployed
concurrently to save time. Dividing the service launch
into run levels composed of independent services
accommodates both scenarios; each run level can define
and resolve attributes to values that can be used by
services launched in downstream run levels.

• Federated cloud deployment scenario. Many
deployments move between different cloud providers,
use several different providers for one launch [24], or

use both cloud and noncloud resources [25]. Thus, any
launch management tool for infrastructure clouds
should be platform-agnostic so that it can be deployed

on any IaaS cloud as well as integrate noncloud

resources. In order to achieve portability and flexibility
it is important not only to work with multiple providers
but also to launch different VMs on different clouds
with a single launch plan. This can be achieved by using
adapters, such as libcloud [5] or deltacloud [4] that
provide a bridge to many IaaS cloud providers and
services, or by leveraging the increasing availability of
standards such as the specification recently released by
Open Grid Forum’s Open Cloud Computing Interface
(OCCI) [11]. Launching services on noncloud resources
can be accomplished by accessing the resource and
configuring the service; however, launching them on a
VM has the advantage that the environment is known
and controlled by the user and thus carries the risk of
fewer potential failures and inconsistencies.

• Testing a launch. To deal with complex launches in a
structured way and be able to reason about a complex
system, a user must be able to make and verify
assertions about vital properties of the system. Those
assertions can be both generic (e.g., “Is the VM
responding to pings”?), and user-defined (e.g., testing
an application-specific property of a system). For this
reason, it is important that the user can define arbitrary
soundness tests for the system. Management tools for
infrastructure clouds should thus provide mechanisms
that allow users to select or configure such tests,
associate them with services, and execute them to
validate the correctness of a launch both at deployment
time and running time. In order to ensure meeting a
wide range of useful tests, they should be executed
inside the VMs (e.g., based on ssh into the VM), rather
than rely on external information only.

• Ongoing monitoring of a launch. In order to closely
monitor the health of the system, it is essential that the
vital assertions about the system can be reevaluated at
any time. Therefore, if such assertions are embedded in
the launch tests, those tests need to be able to be rerun
not just at launch but at any time by an action triggered
automatically or manually by the user (i.e., launch
operator). It should be possible to store the results of
monitoring tests in a database for launch analysis and
recreation.

• Policy-driven repair and maintenance of a launch. If
any of the assertions about the system (as embodied by
the tests) fail, it should be possible to repair the launch
components by applying a repair action defined by a
policy. For example, a failure can lead to a number of
repeats of a launch action or abandonment of a launch
component or even the whole launch if a component is
deemed to be irreparable.

• Lightweight and easy to use. In a cloud scenario, where
multiple users are building, sharing, and improving
complex launch plans on a daily basis, a launch tool that
is complex, has a learning curve, and requires
configuration is only exchanging one type of complexity
for another. In such an environment a launch plan has to

operate based on an easily copied launch plan and a
“one-click” action. Therefore, while it is tempting to
provide a more general system that can be customized to
this particular task, the launch tool must be purpose-
specific and spare in terms of functionality. Further, for
ease of use, a minimum of software should be required
to be preinstalled and running on a host system. Often
configuration management tools require that an agent be
custom installed and run. This requirement makes it
impossible to use the multitude of freely and readily
available Linux VM image distributions without having
to rebundle the VM images. Rebundling VM images
can be a difficult task for all but the most advanced
users.

3. ARCHITECTURE AND

IMPLEMENTTATION
We discuss in this section the architecture of cloudinit.d and its
implementation.

3.1 Launch Plans
Cloudinit.d arranges an application into three basic

constructs: atomic service, run level, and launch plan.

Figure 1: Launch plan example shows relationships between

components: the first run-level contains all the services

without dependencies as well as services that run-level 2

depends on; run-level 3 depends on run-level 2.

• A service is an entity confined to a single host machine
and responsible for a well-defined task. A service can be
hosted by a VM that is automatically launched by
cloudinit.d or by an existing machine that is accessible
via ssh. Many services can be configured to run in a
single host, but often a service is associated with a VM
dedicated to its needs. One may think of a service as a
newly launched and configured VM with a single,
dedicated purpose. Examples of services are an HTTP
server, a node in a Cassandra [12] pool, or a node in a
RabbitMQ [13] message queue.

• A run level is a collection of services with no
dependencies on each other. All services in a run level

can be launched at the same time. A run-level launch is
considered complete when all of the services in it have
successfully started. Services in a run level can be run
on one single cloud or across many different clouds,
since cloudinit.d makes no assumptions about locality.
Any service in a run level can depend on any service
from a previous run level. For example, run-level 1
forms a database. A web application in run-level 2 can
depend on that database, meaning, it can acquire all of
the information needed to connect to it, like security
tokens and contact port, dynamically at boot time.

• A launch is an ordered set of run levels. To make a
launch plan, first one defines all the services. Then
those services are arranged into run levels in a specific
order: the services with no dependencies are put in run-
level 1 since they all can be started simultaneously
without any additional information, the next run level is
composed of services with dependencies on level 1
only, and so forth. The completed launch forms a
complete cloud (or intercloud) application.

Figure 1 shows an example of services collected into run
levels; the arrows show the dependencies of one service on
another. When a service needs information from another, it
depends on it and thus must be in a higher run level. It can
request dynamic information about another service at boot time or
repair time. This powerful feature allows the location of any given
service to be entirely dynamic. We note that a service may depend
on already running systems not controlled by the launch operator.
For example, if a service uses Amazon’s S3 [28] as a data store,
all the information needed to connect with the operators S3
account can be passed into a service as a first-class part of the
bootstrap process.

3.2 Configuring Services
Two factors determine how a service behaves and how

cloudinit.d interacts with it: the software preinstalled on the
service’s host and a collection of scripts defining its startup and
termination properties as well as its operating assertions. The
service’s host can be a VM or a bare-metal running machine. The
various scripts and their functions are described below:

• The startup script (bootpgm) is a program that is run
once at launch time to configure the service. The
purpose of this program is to set up the host server with
all needed software and start that software using any
tools convenient to the user. The program is copied by
cloudinit.d to a distinct location inside the service’s host
as soon as ssh access to that host has been verified.
This strategy minimizes the need for preinstalled
software to simply sshd and thus maximizes the
selection of possible resources to use as host systems for
a service. The startup agent will often download and
install software and then configure that software for use.
Tools such as apt-get[15], yum[16], chef-solo[17], or
puppet [29] can be used by this script to perform these
functions: the choice of this implementation technology
is left to the user, the only constraint being that it must
be executable by the service’s host.

• The test script (readypgm) is a program whose purpose
is to check the status and health of the service. It can be,
and typically is, run many times during the lifetime of
an application. When the user of cloudinit.d requests the
current status of a previously launched cloud

application the dependency graph of run levels is again
walked. This time the test script is copied into the
service’s host and run via ssh. As an example, if the
service's goal is to serve HTTP, the readypgm might
connect to localhost:80, download a known web page,
and check its content. If all is well, the readypgm
returns 0, and the service is reported as working. If not,
the service is marked as down, and the cloud application
is in need of repair. The output from the readypgm is
logged in a file local with respect to cloudinit.d so that
the user can inspect the results of a failed service for
more details.

• The termination script (terminatepgm) is a program run
when a service is shut down. It is there to nicely clean
up resources associated with the service. For example,
a service that has data kept in memory buffers can use
this hook to make sure all buffers are flushed to a
permanent store.

Both the software installed on the various services host
systems and the scripts described above provide a baseline for the
capabilities of the service and are defined by the author of the
launch plan (and thus the author of the service).

3.3 Boot Process
Here we describe how a single service is brought into

existence by cloudinit.d. First, a launch plan is created that
describes a cloud application with functionality arranged into the
components described above; this launch plan is given to the
cloudinit.d command line program. The first action cloudinit.d
takes is to validate that the launch plan has no errors. Launch
plans tend to require the acquisition of VM resources, and this
acquisition is often costly in terms of time and money; thus we
want to avoid the case where the first nine run levels pay the
price, only to discover a bug in the launch plan in level 10.

Once the plan is validated, all IaaS requests for new VMs are
made. We prestage this request as an optimization: starting a new
VM can take a significant amount of time, and many tasks can be
done in parallel.

Then cloudinit.d starts monitoring the services at run-level 1,
first waiting for the IaaS system on which any VM on that level
was launched to report an associated hostname. Once a hostname
is present, cloudinit.d repeatedly, but not aggressively, attempts to
contact the service’s host. Contact is made by attempting to ssh
into the system. When a successful ssh connection is made, the
bootpgm is copied to a distinct location via scp. In higher run
levels where there is a possible service dependency, an additional
document that contains dependency information about all
previously created services (currently expressed in json[18]) is
copied to the service’s host. The bootpgm script is then run inside
that host. It can use the information in the dependency document
for discovering values about its dependencies from services at
lower run levels. As described above, this script is responsible for
setting up the service for use in the cloud application. If it is
successful, it must have an exit code of 0.

Along with the exit code, the bootpgm can return a
dependency document containing a set of key/value pairs that
describe attributes of the newly configured service for
consumption by higher-level services. For example, an HTTPS
service may want to return the public key that it generated at boot
time so that higher-level services can safely access it. This

document is used by cloudiit.d to furnish services at higher run
levels with dynamic information about this newly created service.

Once all the services at a run level have completed
successfully, the process is then performed on the next run level
until all run levels have completed.

3.4 Security Considerations
The operator of cloudinit.d must have ssh private keys that

allow access to all service hosts in the cloud application. When
dealing with IaaS clouds (typical with cloudinit.d) this is not a
problem. Ssh key management is a first-class feature with all IaaS
clouds, and there is a well-understood process for managing keys.
When the service’s host is a static machine, the operator must
make sure that the machine can be accessed via ssh in order to use
it with cloudinit.d. Various configuration options in the launch
plans handle the nuances of this situation.

The operator will also need to have access tokens for any and
all of the IaaS clouds from which resources will be requested. The
details of those keys are associated with the launch plan and are
described in later sections.

We note that the operator of a cloudinit.d (i.e., the account
that launched the boot plan) should be considered the root-level
user of the application. This operator will have root access to all
IaaS-launched VMs and will often need root-level access to the
static system. Further, the cloudinit.d operator has the power to
terminate the application. As part of the launch or once the cloud
application has been launched, lower-level access can be granted
in an application-specific way, but the owner and operator of the
launch plan will be the root-level user.

3.5 Repair
In any distributed system, failures are inevitable. In complex

cloud applications, diagnosing and repairing single failures can be
an arduous task. System failures are detected by cloudinit.d by
running the test script, readypgm, inside the service’s host
machine. The user can manually decide when to check the status
of an application with the cloudinit.d command-line program or
the cloudinit.d python API. If the readypgm returns a failure on a
given service, that service can be automatically repaired.

The repair process works by first running the terminatepgm
(if it exists) and then shutting down the VM hosting the service if
necessary. The boot process described above is then run on that
service alone. In this reboot many of the dynamically determined
attributes of this service (e.g., hostname) will likely change.
Hence, once the reboot is complete, cloudinit.d will test all the
services at a higher level. If any of those services fail, they too
will be repaired in this way, propagating the repair up the levels.

4. APPLICATION EXAMPLE
Figure 2 shows an example cloud application run on four of

the FutureGrid clouds using cloudinit.d. Here we have a highly
available web application that uses a Cassandra distributed
database for highly available storage, Apache HTTP servers for its
web application, and a load balancer to distribute the work. To
avoid a single point of failure and to ensure locality, each node of
both the Cassandra database and the web farm is distributed
geographically across all four clouds. The load balancer is run on
a single static host with a known location. As part of our launch
plan in this example, we will tell cloudinit.d how to contact each
of the four clouds and that we want two VMs in each cloud, one
to handle the workload of Cassandra and a second to handle the
web requests. In total the application will have eight VMs (two in
each cloud) and one static machine.

Figure 2: Example application using cloudinit.d deployed on

FutureGrid Nimbus clouds.

4.1 Booting and Configuring a Single

Instance
The launch plan for this application has three run levels. The

first has the four Cassandra nodes as services configured to run in
each of the four FutureGrid clouds. The second is a set of
replicated HTTP servers, configured similarly. The final run level
is the load balancer, which is run on a bare-metal host that is
assumed to be running prior to the boot of this application. The
plan is configured in such a way as to route the important
connection information from the Cassandra cluster to each HTTP
server. Similarly, the list of HTTP servers is sent to the load
balancer once run-level 2 completes.

As input, cloudinit.d takes a set of configuration files. To
provide a practical understanding of how to create a working
launch plan, we describe its details here. The launch plan has two
main file types: a top-level configuration file and a run-level
configuration file. We chose the ini style file format here because
the description needs are simple and limited to key/value pairs. A
feature-rich, yet harder to read and understand description
language like XML or JSON would make the launch plan author’s
job unnecessarily complicated. The top-level configuration file
simply enumerates the run levels and associates each run level
with an additional configuration file. Our example top-level
configuration file follows.

 [runlevels]
 level1: cassandra.conf
 level2: http.conf
 level3: loadbalance.conf

This tells cloudinit.d that there are three run levels and where
the description of those run levels can be found. Inside each of
those files is a description of each service.

Here we will just introduce the service section of the boot
level configuration file that describes the Cassandra service that
will be run on the FutureGrid sierra cloud.

 [svc-sierraCassandra]
 iaas_key: XXXXXX
 iaas_secret: XXXX
 iaas_hostname: sierra.futuregrid.org
 iaas_port: 8443
 iaas: Nimbus

 image: ubunut10.10
 ssh_username: ubuntu
 localsshkeypath: ~/.ssh/fg.pem
 readypgm: cass-test.py
 bootpgm: cass-boot.sh

The first five entries describe the cloud on which the service
will be created. User security tokens and the contact point of the
cloud are placed here. Cloudinit.d is also told what type of cloud
has been described. In this case it is Nimbus, but it could be other
common cloud types such as EC2 [19] or Eucalyptus [20].

The line image: ubuntu10.10 is a directive saying to request
that the IaaS cloud launch the image with that name. In our
example the image is a base Ubuntu 10.10 image. Both
ssh_username and localsshkeypath give cloudinit.d the needed
information for establishing a communication link with the VM
instance launched from the ubuntu10.10 image.

Readypgm and bootpgm point to scripts that perform the
tasks associated with the respective directives (described in detail
above). In our case cass-boot.sh will be copied to the VM instance
with scp. The ssh session will be formed using the key at
localsshkeypath and the username ubuntu. Then cass-boot.sh will
be run via ssh as the ubuntu user. It will download all the software
needed for Cassandra to run and configure this node to be a
member of the four-node cluster. When it is complete, it will
return to cloudinit.d the contact information of the newly created
Cassandra node. A similar entry is made in cassandra.conf for the
other clouds.

Once all four Cassandra services have been successfully
booted, cloudinit.d will open the configuration file http.conf. The
contents of this file will look similar to that of cassandra.conf, the
main difference being the bootpgm used to configure the system.
Again four new VMs will be started on each of the four clouds.
Cloudinit.d will again ssh into these machines and stage in the
configuration scripts. Instead of setting up Cassandra, however,
the bootgm will download, install, and configure a web server.
Furthermore, it will connect to the Cassandra data store created in
the previous boot level.

The final step in our example application is setting up the
load balancer. In this case the host machine will not be a VM.
Instead it will be a static machine at a given hostname. The
process for configuring it works in almost an identical way, only
without the initial request to an IaaS framework to start a VM.
That first step is skipped, and the process continues by accessing
the given hostname with scp and ssh. Because there are no further
run levels, once this run level successfully completes, details
about each started service are reported to a log file, and a
summary is reported to the console for immediate observation by
the operator.

5. RELATED WORK
CloudFormation [21] is a product created by Amazon Web

Services. Much like cloudinit.d, it is used to create and operate
distributed applications in the cloud in a predictable and
repeatable way. Unlike cloudinit.d, however, CloudFormation
cannot be used across many clouds; it is a tool entirely dedicated
for use with AWS only and cannot be used with the many
resources available in science clouds or other commercial clouds.
A further and important difference between the two systems is that
cloudinit.d is designed to boot and contextualize an ordered
hierarchy of VMs. CloudFormation is designed specifically to
make all the AWS services (like SQS [22] and Elastic Beanstalk
[23]), work in concert with each other; it does not do VM

contextualization, and it does not have an explicit notion of boot
order.

Configuration management systems such as puppet and chef
are designed to manage the configuration of systems declaratively.
Much like cloudinit.d, they can set up and maintain services on a
set of systems typically in a cluster. However, unlike cloudinit.d,
the systems on which they are run require that existing software
agents be installed and running on all systems in their cluster. In
contrast, the only initial dependency that cloudinit.d has is the
ubiquitous sshd. This allows cloudinit.d to work with base images
readily available on virtually every cloud and does not require the
user to bundle a special image. For example, Ubuntu images are
regularly released on EC2 for public use (as are many other Linux
distributions). Furthermore, far from being a competitor of
configuration management systems, cloudinit.d is designed to
work with them. In best practices cloudinit should be used to
provision a host with all of the software, security information, and
configuration files needed to properly run a configuration
management system such as chef solo (as demonstrated in our
example).

The Context Broker [30] from the Nimbus project is a
service that allows clients to coordinate large virtual cluster
launches and created the concept of the one-click virtual cluster.
While cloudinit.d handles one-sided configuration dependencies
between services, the Context Broker is capable of handling more
complex interdependencies with additional complexity cost.
Furthermore, while the Context Broker focuses exclusively on
configuration management of VMs provisioned by another agent,
cloudinit.d bundles configuration management with provisioning
resources across multiple clouds. Wrangler [31] is a recent
research project providing functionality similar to the Context
Broker, with similar trade-offs.

Claudia is an open source service manager originally
affiliated with the One Nebula project but now absorbed by
Stratus Cloud. Claudia is more tightly coupled to IaaS services
and the management of VMs than is cloudinit.d is. Further, its
architecture has several running components and thus presents a
much more complex and heavyweight solution than does
cloudinit.d.

6. SUMMARY
This paper introduces cloudinit.d, a tool for launching,

configuring, monitoring, and repairing a set of interdependent
VMs in an infrastructure-as-a-service (IaaS) cloud or over a set of
IaaS clouds. In addition, similar to its namesake the UNIX init.d
program, cloudinit.d can launch specified groups of VMs at
different run levels representing dependencies of the launched
VMs. This feature facilitates dealing with interdependencies with
VM while optimizing the launch by allowing independent VMs to
launch at the same time.

Cloudinit.d provides a new addition to the cloud computing
ecosystem, making it easier for scientists to repeatedly launch,
manage, and reason about sets of VMs deployed in he cloud. The
capability to deploy launches repeatably is particularly important
in the construction of stable system; and the ability to evaluate, at
any time, application-specific assertions significantly simplifies
VM launches in cloud environment.

ACKNOWLEDGMENTS
This material is based on work supported in part by the

National Science Foundation under Grant No. 0910812 to Indiana
University for "FutureGrid: An Experimental, High-Performance
Grid Test-bed." Partners in the FutureGrid project include U.

Chicago, U. Florida, San Diego Supercomputer Center - UC San
Diego, U. Southern California, U. Texas at Austin, U. Tennessee
at Knoxville, U. of Virginia, Purdue I., and T-U. Dresden. This
work also was supported in part by the Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357.
The OOI Cyberinfrastructure program is funded through the JOI
Subaward, JSA 7-11, which is in turn funded by the NSF contract
OCE-0418967 with the Consortium for Ocean Leadership, Inc.

REFERENCES
1. Armbrust, M., et al., Above the Clouds: A Berkeley View of
Cloud Computing. 2009, University of California at Berkeley.

2. Keahey, K., T. Freeman, J. Lauret, and D. Olson. Virtual
Workspaces for Scientific Applications. in SciDAC Conference.
2007. Boston, MA.

3. Beckman, P., S. Nadella, N. Trebon, and I. Beschastnikh,
SPRUCE: A System for Supporting Urgent High-Performance
Computing. IFIP International Federation for Information
Process, Grid-Based Problems Solving Environments, 2007(239):
pp. 295-311.

4. deltacloud: http://incubator.apache.org/deltacloud/.

5. libcloud: a unified interface to the cloud:
http://incubator.apache.org/libcloud/.

6. Keahey, K., and T. Freeman. Contextualization: Providing
One-click Virtual Clusters. in eScience. 2008. Indianapolis, IN.

7. Marshall, P., K. Keahey, and T. Freeman, Elastic Site: Using
Clouds to Elastically Extend Site Resources. CCGrid 2010, 2010.

8. Meisinger, M., C. Farcas, E. Farcas, C. Alexander, M. Arrott, J.
de La Beaujardiere, P. Hubbard, R. Mendelssohn, and R. Signell.
Serving Ocean Model Data on the Cloud. Oceans 09, 2009.

9. Amazon Web Services (AWS): http://aws.amazon.com/.

10. Jackson, K., L. Ramakrishnan, K. Muriki, S. Canon, S.
Cholia, J. Shalf, H. Wasserman, and N. Wright. Performance
Analysis of High Performance Computing Applications on the
Amazon Web Services Cloud Amazon Web Services Cloud.
CloudCom. 2010.

11. Open Cloud Computing Interface (OCCI): http://occi-wg.org/.

12. Cassandra: http://cassandra.apache.org/.

13. RabbitMQ: http://www.rabbitmq.com/.

14. FutureGrid: https://portal.futuregrid.org/

15. Debian HowTo: http://www.debian.org/doc/manuals/apt-
howto/

16. Fedora Project: http://fedoraproject.org/wiki/Tools/yum

17. OpsCode: http://wiki.opscode.com/display/chef/Chef+Solo

18. JSON: http://www.json.org/

19. EC2: http://aws.amazon.com/ec2/

20. Eucalyptus: http://www.eucalyptus.com/

21. CloudFormation: http://aws.amazon.com/cloudformation/

22. SQS: http://aws.amazon.com/sqs/

23. Elastic Beanstalk: http://aws.amazon.com/elasticbeanstalk/

24. Riteau, Pierre, Mauricio Tsugawa, Andrea Matsunaga, José
Fortes, Tim Freeman, David LaBissoniere, and Kate Keahey. Sky
Computing on FutureGrid and Grid’5000. TeraGrid 2010,
Pittsburgh, PA. August 2010.

25. http://www.isgtw.org/feature/case-missing-proton-spin

26. Wilde, Michael, Mihael Hategan, Justin M. Wozniak, Ben

Clifford, Daniel S. Katz, and Ian Foster. Swift: A Language for
Distributed Parallel Scripting. Parallel Computing 2011.

27. Sonntag, Mirko, Dimka Karastoyanova, and Ewa Deelman.
Bridging the Gap between Business and Scientific Workflows. e-
Science 2010, Brisbane, Australia, 2010.

28. Amazon Simple Storage Service (Amazon S3):
http://aws.amazon.com/s3/.

29. Puppet: http://projects.puppetlabs.com/projects/puppet

30. Keahey, K., T. Freeman. Contextualization: Providing One-
Click Virtual Clusters, eScience 2008, Indianapolis, IN.
December 2008.

31. Juve, Gideon, and Ewa Deelman. Wrangler: Virtual Cluster
Provisioning for the Cloud. Short paper in Proceedings of the
20th International Symposium on High Performance Distributed
Computing (HPDC'11), 2011.

