
Abstract—An attribute-based authorization infrastructure
developed for the Open Science Grid is presented. The
infrastructure integrates existing identity-mapping and group-
membership service using concepts prototyped in the PRIMA
system. Authorization scenarios for requests to compute and data
resources are detailed. A new SAML obligated authorization
decision statement is introduced that attaches an XACML
obligation to the authorization decision. The use of obligations
enables site-centralized, service-independent policy management.
Authorization decisions are enforced via a Workspace Service
that creates constrained execution environments configured in
accordance with the obligations and other attribute-based
information. Finally, an experimental PRIMA authorization
service that extends and simplifies the infrastructure is
described.

Index Terms—Authorization, Account Management,
Attributes, Roles

I. INTRODUCTION

computational Grid supporting large-scale collaborative
scientific research is organized around the concept of a
“virtual organization.” A virtual organization (VO)

represents the resources and people that are intended to be part
of the collective enterprise. Agreements among the parties
participating in the VO define the rules for resource usage, the
privileges that individuals within the VO are allowed to

Manuscript received June 3, 2005. This work was supported in part by
Fermi National Accelerator Laboratory, the Virginia Commonwealth
Information Security Center, and the IBM Corporation.

M. Lorch. Author was with the Department of Computer Science at
Virginia Tech, Blacksburg, Virginia 24060 USA, and has recently joined IBM
Germany (e-mail: lorchm@acm.org).

D. Kafura. Author is with the Department of Computer Science at Virginia
Tech, Blacksburg, Virginia 24060.USA (phone: 540 231 5568, fax: 540 231
6075, e-mail: kafura@cs.vt.edu).

I. Fisk. Author is with Fermi National Accelerator Laboratory, Batavia, IL,
60510, USA, (e-mail: ifisk@fnal.gov)

K. Keahey. Author is with Argonne National Laboratory, Chicago, IL
60439 USA, (e-mail: keahey@mcs.anl.gov).

G. Carcassi. Author is with Brookhaven National Laboratory, Upton, NY
11973, USA, (e-mail: carcassi@bnl.gov).

T. Freeman. Author is with University of Chicago, Chicago, IL 60637
USA, (e-mail: tfreeman@cs.uchicago.edu).

T. Perelmutov. Author is with Fermi National Accelerator Laboratory,
Batavia, IL, 60510, USA, (e-mail: timur@fnal.gov)

A. S. Rana. Author is with the University of California, La Jolla, CA,
92093, USA, (e-mail: rana@fnal.gov)

exercise, and how the VO itself is organized and managed.
The security mechanisms enforcing the proper use of the
resources contributed to the VO must confront the varying
ways in which the VO members might be identified by their
“real” home organization and the heterogeneity of resource
types within the VO.

A VO may support a complex set of relationships defining
which users are part of which projects within the VO and
which users are designated to perform distinguished roles
within the VO at various times. Examples of these
relationships include:

A single user may be a member of several projects.
Not only are there different resource allocations for
these projects, but the resource usage must be
properly charged to the correct project and the
correct VO.
A single user may have multiple roles in a VO. At
times the user may act as a project administrator and
at other times the user acts a regular VO member.
The “community service” resource usage when
acting as the project administrator should be
accounted for separately from the usage when acting
as a regular VO member. Furthermore, when acting
as the administrator, the user may have privileges not
available to that same user when acting as a regular
VO member. For example, when acting as the
administrator the user may be able to terminate jobs
running within the VO that were created by other
users. This privilege is not available when the user is
acting as a regular project member.
A group of individuals may alternate the
administration of the VO with only one individual at
a time acting as the administrator. To insure non-
interfering administration of the VO, the
administrator function may be permitted to a given
individual only during a pre-determined period of
time.

These relationships are based on the personal experiences
of one or more of the authors or are goals of the Open Science
Grid project.

Current Grid security mechanisms exhibit several
weaknesses when attempting to cope with the complex VO
structure illustrated above. First, enforcement mechanism at
the resource level may not be aware of VO groups or roles.

Authorization and Account Management in the
Open Science Grid

Markus Lorch, Dennis Kafura, Ian Fisk, Kate Keahey, Gabriele Carcassi,
Tim Freeman, Timur Peremutov, Abhishek Singh Rana

A

Grid Computing Workshop 20050-7803-9493-3/05/$20.00  2005 IEEE 17

Typically VO group and role policies are not communicated to
the Grid resources. Resources therefore have no basis for
differentiating between users from a given VO. As more
users, applications, resources, and services are added to the
VO, the level of security becomes increasingly more hazard-
prone with respect to resource security, data and job security,
accountability, and efficiency. A more flexible authorization
mechanism is required that can distinguish between individual
users and between the roles an individual user can hold. To
achieve and maintain good service with the enhanced security,
it is important to incorporate the policies of both the VO and
the individual resources when defining the details of such an
authorization system.

Second, multiple users are frequently mapped to the same
resource-level account (e.g., all users from a given VO are
mapped to a single, shared user account). This many-to-one
mapping reduces the administrative overhead of manually
maintaining individual user accounts and simplifies the
sharing of (data) resources among members of a single VO.
However, this mapping creates two major security problems.
First, every access is granted with the full set of access
privileges that the VO as a whole is authorized to assume.
Second, the user activities are not well insulated from each
other; users may inadvertently modify or destroy the work of
other users mapped to the same account and tracing a problem
to a particular client may not be possible. Overall, the many-
to-one mapping provides limited support for the
implementation and management of authorization policies and
affords a relatively low degree of system security.

Third, site-level policies are typically replicated such that
each Grid resource has its local copy of these policies (e.g.,
local grid-map file). In addition individual services often
require policies to be stored in a proprietary format (e.g., the
dCache kpwd file vs. the Globus grid-map file) while
fundamentally containing the same information. The
maintenance and auditing of these redundant policy sources is
an administrative nightmare and often presents a weak
component of the deployed Grid authorization system. A site-
centralized, Grid service independent management system for
such policy information can improve the maintenance and
promote the consistent enforcement of site access control
policies.

To address these weaknesses the following requirements
have been defined for the Grid security infrastructure of the
U.S. CMS and U.S. ATLAS high-energy physics
collaborations:

Resource providers (sites) define authorization
policy based on groups and roles of the supported
VOs, and have mechanisms that can enforce these
policies consistently over all the resources in their
domain.
Enforcement mechanisms must support existing
applications and use cases.
The access rights with which a specific access is
granted are reduced and ideally represent a fair

approximation of the least amount of privileges
required for this access.
Users can drive/customize the allocation of a
subset of their access rights to a specific access
(e.g. through the selection of their current “role”).
Users may be a member of multiple collaborations
(VOs) and different sub-groups within a
collaboration. The system should support the
separation-of-duties principle for these users.
Users are to be separated from each other and an
individual user’s files must be protected against
accidental or malicious modification by other users
(including other members of the same VO).
The management of local user account mapping
tables (resource policies) should be improved and
unified among compute and storage services.

The Privilege Project, a collaboration among Fermi
National Accelerator Lab, Virginia Tech, and Brookhaven
National Lab with developers from US-CMS, US-ATLAS and
the Particle Physics Data Grid (PPDG), has developed an
attribute-based authorization infrastructure to address these
requirements based on previous work on PRIMA [1].

The developed software components are included in the
latest releases of the Virtual Data Toolkit, a Grid middleware
distribution, and are part of the Open Science Grid
middleware.

The work described in this paper integrates the use of
authorization attributes, flexible account management, and
obligations to meet the defined requirements. Authorization
attributes empower VOs to drive varying policies for different
user groups and roles in order to limit which tasks the users
can perform and with what priorities, on an access-by-access
basis. The user is also empowered to select the appropriate
VO/group/role combination according to the activity they plan
to perform. Flexible account management is used to separate
the activities of users from each other and to separate the
activities of a single user acting in different roles. Finally,
obligations are used as a critical element in constructing a site-
centralized and unified service that avoids redundant storage
of security information. The combination of these elements
leads to a security structure within which computing and
storage resources are empowered to intelligently enforce
priorities and data access rights set at the VO level. Users are
individually recognized and their activities controlled as
needed in order to adhere to the site-specific security
requirements.

The remainder of this paper is organized as follows. Section
II discusses the authorization model and general architecture
for compute resources in detail. Section III focuses on the
slightly more complex authorization architecture for storage
resources and Section IV discusses the use of obligations in
authorization decision. Execution environments are discussed
in Section V and an alternative policy decision point is
covered in Section VI. A summary concludes the paper.

18

II. COMPUTE AUTHORIZATION ARCHITECTURE

The infrastructure employs an attribute-based authorization
model where privileges are effectively granted to users by
assigning attribute values, such as VO-membership and roles
within a specific VO, to their identity. The users can select
from the set of attributes available to them and present the
selected attributes to a Grid resource when access to a specific
Grid service is requested. The approach of providing the
appropriate attributes with a request to the resource is referred
to as attribute-push and, in contrast to more traditionally used
attribute-pull, enables the user to control what attributes are
presented when an authorization decision is computed. The
Grid resource will evaluate the presented attributes and render
them against applicable policies. This process will yield the
appropriate access rights for the particular access which then
have to be enforced on the Grid resource providing the
service.

The security infrastructure components that were available
at the beginning of this project provided isolated services for
aspects of the desired architecture. These components had
evolved in different organizations to solve specific
authorization problems in the computing resources maintained
by their organization. Integrating and enhancing these
components was an important goal and a difficult challenge in
this project. The components, described briefly below, are the
Globus gatekeeper and GridFTP server [2], the GUMS Grid
User Management System [3], the VOMS VO Membership
Service [4], the SAZ Site Authorization Service [5], and
dCache, a storage service [6]. A key integrating component,
the PRIMA module [1], employed concepts and

implementations that were developed as part of the PRIMA
project.

The PRIMA Module is a dynamically loadable
authorization module that is present on every Grid resource. It
replaces the existing grid-map file functionality on Globus
resources. The PRIMA Module interfaces with Globus
services like the Globus gatekeeper and GridFTP server
through an authorization callout originally developed in
previous work [1] and later incorporated by the Globus team
as an integral part of the pre-ogsa Grid security architecture.

The Grid User Management System (GUMS) has been
extended as part of the project to an online identity mapping
service. GUMS maps a Grid entity to a local username at the
requested resource based on the entity’s X.500 name and
provided attributes. Thus, GUMS provides for the site-
centralized, site-consistent allocation of local user accounts. A
variety of allocation algorithms are possible including the
dynamic allocation from a pool of user accounts, the mapping
to role-specific shared accounts, and the mapping of
individual (statically allocated) accounts.

The Virtual Organization Membership Service (VOMS)
maintains a database of members and member roles for a
specific VO. VOMS can issue user attributes that certify this
information for authorization purposes. In previous Grid
infrastructures earlier versions of VOMS were used as a
database from which a batch process would generate static
grid-map files and provision them to Grid resources. The
capability of VOMS to act as an online attribute authority and
issue VO attributes has not been leveraged in earlier Grids.

Figure 1 shows the overall architecture for compute
resources. The numbered lines show the sequence of actions
for submitting and authorizing a request for service at a
compute resource.

VOMS
Attribute

Repository

GUMS Identity
Mapping Service

(manages user
accounts on

resources, incl.
dynamic allocation)

4. HTTPS/SOAP Request: SAML Query:
May user “Markus Lorch” with “VO=USCMS / Role=production”

access this resource?

1. VOMS-Proxy-Init request with desired role

3. Standard globus-job-run
request with VOMS-extended proxy

Gate-
keeper

Gridmap
callout

5. HTTPS/SOAP Response:
SAML Statement: Decision=Permit, with
Obligations Local UID = XYZ, GID = XYZ

Job-manager

VOMS
Server

Resource with VDT 1.3 based on GT3.2

2. retrieves VO membership/role attributes

Client tool for
role selection:

VOMS-Proxy-Init

Resource with VDT 1.3 (GT 3.2)

PRIMA
module

VDT 1.3 Web-Service Container

6. instantiates

VO membership
synchronization

Fig. 1. Basic Privilege Project authorization architecture for compute resources

19

The user requests (Step 1) the credentials that will authorize
the service request to be submitted. The user can choose to
either generate a generic short-lived proxy certificate using the
standard “grid-proxy-init” or to use the VOMS tool “voms-
proxy-init”. With “voms-proxy-init” the user can customize
the proxy certificate with a chosen VO and role attribute.
“voms-proxy-init” will contact a VOMS server to request a
trusted attribute statement from the VOMS server of the
desired VO.

In response (Step 2) the VOMS server provides a signed
X.509 Attribute Certificate with the requested VO-
membership and desired role information if the requesting
user is indeed a member of the VO and holds the desired role.
The attribute information is encoded as a Fully Qualified
Attribute Name (FQAN) as described in [7]. At the client side
the attribute certificate is in turn embedded in the proxy
credential as a certificate extension. If a user wishes to change
roles a new proxy certificate must be created with the new
VOMS attribute (possibly from a different VOMS server)
embedded. The user can have multiple proxy certificates at
any time and select the appropriate proxy certificate via an
environment variable. Integration of this mechanism with
credential storage solutions such as MyProxy [8] is also
supported. The use of standard proxy certificates without
VOMS attributes continues to be supported and provides for
the backwards compatibility and ease-of-use for users with
only a single (default) VO-membership and role.

Once a service request is received (Step 3) by the
gatekeeper (or GridFTP server) the grid-map callout
dynamically locates and invokes the PRIMA module based on
information from a simple configuration file. The information
provided by the grid-map callout includes the authenticated
user’s distinguished name (DN) as well as the security context
established during authentication (which in turn holds all
certificates, including the VOMS issued attribute certificate, if
provided). The PRIMA module, implemented as a set of C
and C++ libraries, extracts and validates the VOMS attribute
certificate and parses the attribute information. To be able to
verify the validity of the attribute certificates the PRIMA
module must have the service certificates of all trusted VOMS
servers available. However, due to the heritage of GUMS (see
below) verification of attribute certificates may not be
required if identity mapping is performed by GUMS.

The identity-mapping and authorization service is contacted
(Step 4) by the PRIMA module. Using the Security Assertion
Markup Language (SAML) [9], an Authorization Decision
Query is formulated which contains the authenticated user DN
(SAML Subject) as well as the VOMS FQAN attribute
(SAML Subject Evidence). This query is sent to GUMS via
SOAP over an HTTPS connection. The PRIMA – GUMS
communication is based on the interface described in [11] and
is also used by the OGSA based components of the Globus
Toolkit for authorization decision queries. This commonality
improves interoperability and provides for a smooth transition
from the current pre-OGSA services used in the Open Science
Grid to OGSA based components in the future.

GUMS, after processing the request will respond with
either a SAML Authorization Decision Statement or an
extended version called an Obligated Authorization Decision
Statement (Step 5). The obligated statement is discussed in
more detail in Section IV and enables the GUMS service to
augment the basic permit/deny/indeterminate decision
supported by SAML with additional decision qualifications,
such as the local user account to be used for this access. The
PRIMA module, upon receipt of the decision statement, will
return the appropriate local user account name to the Globus
gatekeeper or GridFTP server via the grid-map callout
interface. The gatekeeper or GridFTP server can then continue
processing the request in the same way as if a local grid-map
file had been used to retrieve the local user account name.

The authorization process described above provides
opportunities for backward compatibility with the existing
Globus mechanisms and possible future extensions in two
ways. First, GUMS maintains an SQL database with
information about which user DNs are members of which
VOs and their associated roles. This redundant storage of
membership information is not necessary to reach a secure
authorization decision in the described attribute push model of
the privilege project infrastructure. However it enables GUMS
to also operate in a legacy mode in which it creates standard
grid-map files for distribution to Grid resources that do not
have the PRIMA module available and thus cannot perform an
online query. Furthermore it allows for deployments where
the PRIMA module is configured to skip attribute verification
and thus alleviates the need to maintain trusted attribute
authority certificates (VOMS server certificates) on the Grid
resources. GUMS knows all possible members of a VO and a
forged attribute cannot be used to achieve member access.

Second, the currently implemented obligation formats also
enable GUMS to provide information on what UNIX system
group accounts (primary and supplemental groups) are to be
set for the requested access (Fig. 1 depicts primary group
information to be specified by GUMS). If this feature is used
the PRIMA module cannot simply return the group names to
the Grid service as the grid-map callout interface cannot
accommodate these parameters. Instead the PRIMA module
will take responsibility for setting up the appropriate
execution environment by changing supplemental groups,
primary group and user account of the current process before
returning control to the Grid service. This allows dynamic
changes in the mapping of operating system group accounts
independent of the information specified e.g., in /etc/passwd
and /etc/group which empowers the authorization system to
take full advantage of the operating system group security
semantics based on the VO roles selected by the user. This
group mapping functionality may be used in future
deployments of the Open Science Grid.

20

A closely related authorization component that may be
combined with this infrastructure is the Site Authorization
Service (SAZ) [5]. There exists a SAZ client module that is
similar to the PRIMA module in that is invoked by the Grid
service and queries a service, the SAZ service, for an
authorization decision. SAZ enforces the site-specific access
control rules/policies such as specifying prohibited users,
checking for revoked certificates, and validating the user's
certificate path. The SAZ service developed at FNAL is
currently relying on a proprietary protocol for communication.
It is planned that future versions will implement the same
SOAP/SAML protocol and authorization interface used in the
PRIMA-GUMS communication.

The performance of the new framework is well within
acceptable ranges. The overhead introduced by the call-out to
the PRIMA module and the local communication with GUMS
is minimal and does not add a significant delay to the
authorization procedure. For example tests during the
deployment on the Open Science Grid testbed showed delays
on the order of 0.5 seconds/request. The site-centralized
GUMS server can sustain a reasonable number of requests
(e.g., on an older machine 50 requests/second were possible).
Load-balancing and redundancy for GUMS servers is possible
through the underlying Tomcat 5 web service container.

The first deployment of the Open Science Grid (OSG)
utilizes the basic Privilege Project components discussed in
this section. The following section will elaborate on the use of
the Privilege Components in conjunction with storage services
which will be included in the next version of the OSG
middleware package.

III. STORAGE AUTHORIZATION ARCHITECTURE

Data storage resources share with compute resources the

requirement to map the Grid DN of a user to a locally known
user account name. Mapping files, similar to those
traditionally used for compute resources, are also used on
storage resources and thus the same identity mapping
functionality can be applied. In fact, for data access on
compute resources via GridFTP the infrastructure described in
section II works in exactly the same way as for compute
access.

More complex storage systems, such as dCache [6], may
require additional information before such systems can grant
access. Examples include the root path and home path for this
access and if the access has to be restricted to read-only
operations. Traditionally this information is made available to
the storage system via a mapping file. It was one of the goals
of the Privilege Project to also integrate such storage
resources into the authorization infrastructure and reduce the
managerial overhead of maintaining such mapping files for
storage resources as well. The resulting architecture, using a
Storage Authorization Service that acts as a proxy between the
storage system and GUMS and provides the additional storage
specific information, is pictured in Fig. 2 and described below.

Steps 1 to 3, the selection of VO and role through the
creation of a proxy certificate with VOMS-issued attributes
and the user initiated service request to the storage resource
are identical with those in Fig. 1 and not pictured in Fig. 2.
There is no semantic difference to the user between a compute
and a storage service access.

When a storage service access request is received by the
dCache storage system the gPLASMA interface calls the
PRIMA module with user the credentials provided to the
storage system during authentication. The PRIMA module
extracts and optionally verifies presented attributes and
formulates a SAML Authorization Decision Query. This
query is sent to the Storage Authorization Service (Step 4),
which exposes the same SAML authorization port type that

4. HTTPS/SOAP Request: SAML Query:
May user “Markus Lorch” with “VO=USCMS / Role=production”

access this resource?dCache
Gateway

gPLASMA
interface

7. HTTPS/SOAP Response:
SAML Statement: Decision=Permit, with Obligations

Local UID = .., Group = .., HomePath = .., RootPath = ..

PRIMA
module

GUMS Identity Mapping Svc.

(manages user accounts on
resources, incl. dynamic

allocation)

Storage Authorization Service

(Augments authorization
response with storage service

specific instructions)

5. HTTPS/SOAP Request:
SAML Query: May user “Markus Lorch” with

“VO=USCMS / Role=production” access this resource?

6. HTTPS/SOAP
Resp: SAML Stmt:
Decision=Permit,
Obligations
UID =..

Fig. 2 Storage Authorization Architecture and Sequence

21

was added to GUMS. The Storage Authorization Service,
upon receipt of such a query, passes on this query to the site’s
GUMS server (Step 5). If the GUMS server returns a positive
response (with an obligation that specifies a local user name,
Step 6) then the Storage Authorization Service queries its
local policy file for additional authorization decision
qualifications that must be provided to the storage resource
with the decision. If GUMS returns a negative response then
no further processing on by the Storage Authorization Service
is required. Finally the augmented SAML response, including
additional obligations for the storage resource, is provided
back to the PRIMA module of the dCache service (Step 7).

IV. OBLIGATED AUTHORIZATION DECISIONS

Obligations are a set of instructions provided with an
authorization decision statement or response. These
instructions may be targeted at the Policy Enforcement Point
(e.g., the gatekeeper and operating system of a compute
resource) and may be used to describe how a requested
service, if allowed, should be confined and monitored during
its execution. In this context obligations may also be used to
convey additional instructions for how to treat a service
request that is not authorized.

Obligations in authorization decision statements can be
used to address the mismatch in the level of detail between the
authorization request and the applicable policies. This
mismatch is one of the more subtle issues frequently
encountered when authorization decisions are made by an
external Policy Decision Point (i.e., the Storage Authorization
Service). Policy decision points are application independent
and are unable to understand or extrapolate the implications of
an arbitrary resource request such as a request to instantiate a
user-provided service. The applicable policies together with
provided attributes are likely to specify in detail what a user
provided service is allowed to do. But a simple permit/deny
decision from the decision point cannot convey this level of
detail. A positive authorization decision response thus needs
to be augmented with additional decision qualifications that
instruct the enforcement point how exactly the requested
action should be permitted and if additional constraints should
be applied. For example, the list of fine-grained access rights
that specifies to what extent the user provided service is
allowed to access other services and resources of the hosting
environment can be provided this way. Alternatively a
reference to an existing execution environment or user
account that is already preconfigured with the appropriate
access rights can be provided. If the PEP cannot fulfill the
obligations then it should not allow the access to proceed. The
enforcement point, upon receiving a positive response from
the decision point, instantiates or selects an appropriate
execution environment configured with the access rights as
specified in the obligations, and starts and monitors the
execution of the requested service in this environment.

The Privilege Project has extended the SAML
Authorization Decision Statement to create an "Obligated
Authorization Decision Statement" that holds at least one
obligation following the XACML obligation format. Each
XACMLObligation element specifies if it is to be fulfilled on
a permit or deny response. Fulfillment of a
XACMLObligation translates to the application of the
attribute assignment that the obligation statement conveys. A
set of attribute assignments can be provided with a single
obligation. The XACMLObligation format does not describe
the semantics of the attributes that are assigned and is
completely independent of the application.

The use of the XACML Obligation format allows the
seamless integration with XACML policies and policy
decision functions. An XACML Obligation can simply be
embedded in the applicable XACML Policy and will
automatically be included in the authorization decision
statement that is conveyed to the enforcement point. Thus
service specific policies can be written that provision service
specific authorization information (such as the rootPath
obligations for storage elements explained in Section III)
while maintaining a service agnostic PDP implementation.
Furthermore, the use of XACML Obligations will enable the
Privilege Project to transition seamlessly to the new XACML
over SAML authorization message format in the future. [12]

V. SHAPING EXECUTION ENVIRONMENTS

The Workspace Service is an alternative solution to the
procurement and management of local user accounts
implemented in GUMS. This section presents a brief
introduction to the Workspace Service and discusses how this
service can be used together with the other Privilege Project
authorization components. The Workspace Service has just
recently been released as a technology preview component of
the Globus Toolkit 4.

A workspace defines a “sandbox” or an execution
environment, an isolated user environment reflecting the
user’s level of privilege, sharing, software preferences, and
other factors relevant to a controlled execution environment.
Such workspaces can be dynamically created and managed via
a Grid service interface to adjust their lifetime, the shape of
the sandbox, or access and management policies for various
Grid entities. We experiment with a variety of workspace
implementations [13]. The current production version simply
provides access to an existing environment (a configured
platform) by generating a Unix accounts for a Grid client [14,
15]. Another implementation takes advantage of superior
isolation and enforcement characteristics of virtual machines
[16] to provide a more flexible implementation. The current
production version has been adopted by the EGEE [17]
project and is discussed here.

The infrastructure allowing for creation and management of
workspaces is composed of a GT4 factory service that allows

22

an authorized Grid client to create individual accounts or
groups of accounts, and a workspace service that allows an
authorized Grid client to manage individual account
properties, such as account access policy or time to live
(TTL). These concepts are represented in WSRF and
implemented using the GT4 implementation of WSRF: e.g.,
account properties (such as TTL or policy information) are
implemented as WSRF resource properties and available for
inspection and modification in standard ways.

As with GUMS, accounts can be allocated based on an
X.509 proxy credential (including a VOMS proxy). If the
proxy contains attribute information, this information is
processed in the policy information point (PIP) which then
makes the attributes available for authorization (i.e.,
processing by the policy decision point (PDP)) and for
customization of sharing and access policy. In the current
implementation accounts are customized by, for example
modifying Unix group settings on an account. The default
PDP implementation is based on simple attribute-based and
name-based access control lists (ACLs) with permit overrides
rule. Account management actions (such as extending TTL or
changing access policies on an account) are also authorized in
similar ways. The Grid entity that created an account can for
example create a policy enabling another Grid entity to access
or even manage an account – however, carrying out such
operation will be subject to resource owner’s policies.

The back-end implementation of workspace creation and
management can rely on different mechanisms according to
site policies and preferences. At this point, our
implementation supports two kinds of such "back-ends": (1)
true dynamic creation (i.e., using the Unix "useradd"
command), and (2) leasing implementation, based on mapping
the Grid entity requesting an account to an existing account
belonging to a pool of accounts created for this purpose
earlier. Our implementation of the latter strategy is based on
the LCMAPS extension of the gridmapdir patch. We
augmented this implementation by developing methods for
configurable and secure termination of account leases
including account quarantines and configurable account
cleaning procedures.

The workspace service works in conjunction with a
resource management and job startup service on a given
platform by exporting interface allowing a service to query for
the association of a Grid entity with any account or a specific
account on a given site. This interface can be used for
example by a GRAM authorization callout. This interface has
been extended to use the same SAML authorization port type
used by the Privilege Project and is able to respond to queries
with Obligated Authorization Decision Statements that specify
the appropriate local user account (i.e., the user’s workspace)
to be used for a requested access. As a result users can
leverage the management interface provided by the
Workspace Service and the Privilege Project infrastructure
can later query the Workspace Service for the appropriate
local user account.

VI. PRIMA AUTHORIZATION SERVICE

The PRIMA Authorization Service is currently an
experimental component of the Privilege Project
infrastructure. This service is discussed here to illustrate the
additional expressiveness and flexibility that a general
purpose authorization service will add to the Privilege Project
infrastructure.

The PRIMA Authorization Service is based on the XACML
PDP discussed in [1], it renders authorization requests against
policies in eXtensible Access Control Markup Language. The
service exposes the same SAML authorization interface used
by other Privilege Project components. The general processing
logic is as follows: The first step after the receipt of a SAML
authorization decision query is to gather information to create
a request to the XACML policy engine. In the XACML model
the component that implements this functionality is referred to
as the (request) context manager. In the PRIMA Authorization
Service this context manager is part of the authorization
service itself. It analyzes the request and, based on the
requested action to be authorized, first queries a GUMS
service for a local user account that would apply to the
requested access. The response from GUMS (particularly the
attribute assignment in a returned Obligated Authorization
Decision Statement) is then embedded in the request to the
policy engine together with other attributes of the user that
may have been provided in the original SAML request to the
PRIMA Authorization Service. In the existing implementation
GUMS has a veto capability in that a negative response to a
GUMS query for a local user account would automatically
trigger a negative response from the PRIMA Authorization
Service.

The next step is to leverage the policy engine to render the
request against the set of XACML policies that are available
to this PDP. The policy engine is based on the SunXACML
implementation of the XACML standard. The policy engine
will evaluate the applicability of the request to the available
policies. If a policy matches then the rules of this policy will
be evaluated to render a positive or negative decision. Each
XACML policy can include a set of obligation statements that
are bound to the outcome of the decision (i.e., apply when
decision = permit or apply when decision = deny). All
applicable obligation statements will be included in the
decision that the policy engine returns. This result (a XACML
response) is then converted into a SAML Obligated
Authorization Decision statement (the XACML decision is
mapped to the SAML decision and the XACML obligation
statements are copied into the XACML obligation field). The
final SAML statement is then returned to the Grid service that
originally requested the authorization decision. In summary
the PRIMA Authorization Service can be viewed as consisting
of a SAML to XACML translator, a Context Manager to
retrieve the GUMS local user account attributes and a general
purpose XACML policy decision point.

We have successfully shown that it can be used to provide

23

the same functionality as the Storage Authorization Service by
simply writing appropriate policies that contain the service
specific instructions in the XACML policies. No changes to
the PRIMA Authorization Service are necessary to support
new obligations with service specific information. The only
two entities that must be able to understand the obligations are
the policy administrator and the enforcement point (e.g., the
storage service). The content of obligations and their meaning
must not be understood by the PDP implementation which
enables the use of the general purpose PRIMA authorization
service for many, if not all, services. Merely the policies have
to be written with the specific service requirements in mind
and have to reflect obligations that can be understood by the
services themselves. A single PRIMA Authorization Service
can be configured with policies for many different services.

The use of a rule-based policy, such as those encoded in
XACML, has administrative and scalability advantages over
the use of configuration files that basically follow an access
control matrix approach such as the configuration file of the
Storage Authorization Service. The access control lists in Grid
environments are typically very large but also very sparsely
populated and difficult to maintain. For example most users of
the VO USCMS can read the VO data input files but only a
few have permission to modify these file. In an access control
matrix every user would have to be listed with its access
control rights, where as in a rule-based policy only the view
“exceptions” with additional rights have to be listed.

VII. OUTLOOK AND CONCLUSION

Development of the Privilege Project software components
will continue and the software will be improved and extended
based on experiences from the integration into the OSG
middleware and the large-scale deployment in the OSG at the
time of this writing. For example one of the improvements
will be to free the PRIMA module from the task of extracting
and validating attribute certificates on the Grid resources. This
task will be dealt with at the site-centralized authorization
services (e.g., to GUMS). The SAML authorization request
will include the complete certificate chain that was used to
authenticate the user to the Grid resource. The authorization
service will then extract and validate the attributes. This
change will improve scalability of the overall infrastructure as
the distributed Grid resources no longer need to know about
trusted attribute authorities (e.g., VOMS servers).

ACKNOWLEDGMENT

We would like to acknowledge the contributions of other
members of the Privilege Project, the Virtual Data Toolkit
team and the Open Science Grid integration activity.

REFERENCES

[1] M. Lorch, D. Kafura “The PRIMA Grid Authorization System”, Int.
Journal of Grid Computing (2004) 2: pp. 279–298.

[2] I. Foster and C. Kesselman, “Globus: A Toolkit-Based Grid
Architecture” in “The Grid, Blueprint for a Future Computing
Infrastructure”, I. Foster, and C. Kesselman, Editors, Morgan Kaufmann,
San Francisco, 1999, pp. 259-278

[3] G, Carcassi “The Grid User Management System”.
http://grid.racf.bnl.gov/GUMS

[4] Alfieri et al. “VOMS: an Authorization System for Virtual
Organizations” 1st European Across Grids Conference, Santiago de
Compostela, Feb. 13-14, 2003

[5] V. Sehkri, I. Mandrichenko, D. Skow, “Site Authorization Service
(SAZ)”, Computing in High Energy and Nuclear Physics (CHEP03), La
Jolla, CA, USA, March 2003, available from
http://arxiv.org/pdf/cs.DC/0306100

[6] M. Ernst et al., “Managed Data Storage and Data Access Services for
Data Grids”, In proc. of CHEP 2004, Interlaken, Switzerland

[7] M. Thompson, V. Welch, M. Lorch, R. Lepro, D. Chadwick, “Attributes
used in OGSA Authorization”, http://forge.ggf.org/projects/ogsa-
authz/document/draft-OGSA-authorization-attributes.pdf

[8] J. Novotny, S. Tuecke, and V. Welch, “An Online Credential Repository
for the Grid: MyProxy”, Proceedings of the Tenth International
Symposium on High Performance Distributed Computing (HPDC-10),
IEEE Press, 2001.

[9] P. Hallam-Baker, E. Maler, et al, “Assertions and Protocol for the
OASIS Security Assertion Markup Language (SAML), Oasis Standard,
November 5th, 2002

[10] H. Poor, An Introduction to Signal Detection and Estimation. New
York: Springer-Verlag, 1985, ch. 4.

[11] V. Welch, R. Ananthakrishnan, F. Siebenlist, D. Chadwick, S. Meder, L.
Pearlman, “Use of SAML for OGSA Authoriztion“, drafts available
from https://forge.gridforum.org/projects/ogsa-authz/document/draft-
ogsa-authz-saml-feb1-05.doc/en/1

[12] XACML – SAML Profile. See http://www.oasis-
open.org/committees/download.php/10525/XACML-2.0-SAML-
PROFILE-CD-02.zip

[13] Keahey, K., K. Doering, and I. Foster. From Sandbox to Playground:
Dynamic Virtual Environments in the Grid. in 5th International
Workshop in Grid Computing. 2004.

[14] Keahey, K., M. Ripeanu, and K. Doering. Dynamic Creation and
Management of Runtime Environments in the Grid. in Workshop on
Designing and Building Web Services. 2003. Chicago, IL.

[15] Workspace Management Service: http://www.mcs.anl.gov/workspace/
[16] Keahey, K., I. Foster, T. Freeman, X. Zhang, and D. Galron, Virtual

Workspaces in the Grid. Europar 2005
[17] EGEE Global Security Architecture , EU Deliverable DJRA3.1,
 https://edms.cern.ch/file/487004/1.1/

24

