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Abstract. To enable Grid scalability and growth, a usage model has evolved 
whereby resource providers make resources available not to individual users 
directly, but rather to larger units, called virtual organizations. In this paper, we 
describe abstractions that allow resource providers to delegate the usage of 
remote resources dynamically to virtual organizations in application-
independent ways, and present and evaluate an implementation of this 
abstraction using the Xen virtual machine and Linux networking tools. We also 
describe how our implementation is being used in a specific context, namely the 
enforcement of resource allocations in the Edge Services Framework, currently 
deployed in the Open Science Grid.  
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1   Introduction 

Over the last decade of successful Grid usage, a model has evolved whereby a number 
of resources federated by a large resource provider such as Grid3 [1] (and its 
successor Open Science Grid (OSG) [2]) and TeraGrid [3] make resources available 
not to individual users directly but rather to larger communities, called virtual 
organizations (VOs) [4]. Each VO then enables its users to use the resources 
according to VO-specific policies. This interaction model allows Grids to scale—a 
fundamental condition of growth—since instead of providing for the needs of each of 
many thousands of users directly, a resource provider need interact only with a 
smaller number of VOs.  

To function correctly, this VO-based scheduling model requires the development 
of tools that can ensure that the resources provided to each client (i.e., VO) are 
delivered in a controlled manner, so that clients obtain the resources they need, and 
one client cannot interfere with others, for example by acquiring excess resources or 
damaging data. In addition, it is frequently important that individual clients be able to 
deploy specialized software not supported by the resource provider. In short, the 



growth and scalability of Grids requires the development of mechanisms that allow 
for a clear separation of concerns between resource providers and the clients that 
consume resources, and thus enable a division of labor [5]. 

We argue that to address management issues arising from this “division of labor,” 
we must develop abstractions and tools that allow clients to dynamically configure, 
deploy, and manage required execution environments in application-independent 
ways, as well as to negotiate enforceable resource allocations for the execution of 
these environments. We have previously defined the virtual workspace abstraction [6] 
that meets many of these requirements. In this paper, we refine this abstraction to 
address dynamic resource allocation and management issues. In so doing, we provide 
a tool satisfying the separation of concerns requirements between resource provider 
and a client.  

More specifically, in this paper we show how a workspace implementation based 
on virtual machines (VMs) can be extended to respond to negotiated resource 
allocations. We also quantify via experimental studies how well such allocations can 
be enforced. Finally, we report on the use of our workspace mechanisms to provide a 
platform for Edge Services [7]—VO-specific infrastructure services particularly 
sensitive to resource sharing—and discuss how workspaces are being used to support 
Edge Services on the OSG production grid.  

In summary, our contributions in this paper are as follows: 
• We describe an abstraction for providing mechanisms for dynamically 

negotiated resource usage as seen from the client’s perspective.  
• We show an implementation of this abstraction using the Globus Toolkit 

[8], the Xen virtual machine tools [9], and Linux networking tools. 
• We describe how this abstraction and implementation has been used to 

realize Edge Services on the Open Science Grid.  
• We evaluate our abstraction and implementation experimentally. 

2   Related Work 

The need for abstractions and mechanisms that enable a separation of resource 
provider and VO enforcement functions has been argued elsewhere [10, 11]. Our 
work here focuses on the management of such resource “slots,” with a particular 
focus on issues that arise when managing more than one slot attribute at a time. 

Several projects have explored the of VMs in distributed computing [12-15]. In 
particular, the Cluster-On-Demand (COD) [16] and VIOLIN [17] projects are relevant 
to our effort as they address resource management issues arising when overlaying 
virtual machines over physical resources. However, while these projects focus on 
simulating coarse-grain management of large numbers of VMs, we develop fine-grain 
abstractions and enforcement methods that provide detailed low-level management. 
We also model virtual resources in terms of allocations directly available to the 
resource user, requiring that overhead be accounted for separately. The Virtuoso 
Project [18] builds a VM scheduler and their approach is complementary to our work.  

The interfaces we propose are informed by the standards work at the Open Grid 
Forum, specifically the work on WS-Agreement [19] and the Job Submission 



Definition Language (JSDL) [20]. We focus on the implementation of such interfaces 
to negotiating Grid abstractions and on demonstrating their relevance. 

3   Requirements and Focus 

Our argument for enabling “division of labor” between resource providers and VOs is 
driven by the need to provide mechanisms for flexible and scalable behavior in the 
Grid. It is impossible for a resource provider to provide every bit of configuration for 
a VO, much less to arbitrate between competing demands from different VOs for 
different configurations. Instead, we want to allow resource providers to focus on 
providing and maintaining resources. In general, we want to enable a provider (e.g., a 
resource owner) to delegate the usage of a well-constrained resource quantum to a 
consumer (e.g., a VO) such that this consumer in turn can further distribute those 
resources among its customers (e.g., VO users). As we have explained elsewhere [6], 
this situation may involve many resource layers and employ different workspace 
implementations to achieve the desired fairness and granularity of sharing.  

A compelling illustration of the need for division of labor between resource 
providers and VOs is provided by Edge Services, Grid middleware services that run at 
a site to enable remote access to site resources. Examples of Edge Services include 
job management services, storage brokers, and database caches. Edge Service 
implementations must often perform multiple privileged and unprivileged actions, 
such as data staging and registration, security processing, monitoring, and resource 
procurement. The variety of possible implementations means that Edge Services are 
often VO-specific. Different VOs upgrade them on a different schedule and may use 
conflicting versions of the software.  

Further, each VO works with an often large and dynamically changing pool of 
users and has to mold its policies to changing objectives (e.g., research vs. 
development). In addition, since all requests for site use come through Edge Services, 
they easily become a bottleneck as request rates increase. Because of their variety and 
complexity (combination of differently owned processes and threads, network and 
disk traffic, and memory demands) it is hard for a resource provider to track, account, 
and enforce resource usage and thus ensure quality of service for any particular VO. 
This leads to situations where some users cannot use a site at all due to excessive 
traffic from others. Last but not least, the relationship between an organization and 
resource provider evolves constantly reflecting the need for potentially frequent and 
dynamic change in the configuration and policy assigned to Edge Services.  

Without a mechanism enabling a resource provider to effectively delegate bulk 
resource usage to a VO, the provider takes on a significant burden affecting its ability 
to scale – and to prevent any one VO from impacting another. In a general case, such 
mechanism should provide separation along the following dimensions: 

1) Environment and configuration: a VO should be able to obtain the 
configuration it needs independently of the resource provider. 

2) Isolation: a VO’s internal activities should not impact the resource 
provider, and thus should do not need to be under the provider’s control.  



3) Resource usage and accounting: a provider needs to be able to provide a 
resource in a way that is independent of how the resource is consumed. 

We focus here on the third concern; the other two concerns are the subject of our 
ongoing research [6, 21]. 

4   Allocating Resources to Workspaces 

The term Virtual Workspaces [21] a customized and isolated execution 
environment that can be dynamically deployed in the Grid. This environment is 
implemented by a workspace image, typically provided by the client, that contains all 
information necessary for its deployment. In addition, the client provides a resource 
allocation request that describes resources bound to the workspace at deployment 
time. The workspace service also provides management interfaces based on the Web 
Services Resource Framework (WSRF) [22], such as inspection and lifetime 
management. Workspaces can be implemented by various means, such as software 
imaging on physical resources as well as virtual machines. Here, we explain how the 
workspace service is used to assign resources to activities contained in the workspace.  

4.1   Negotiating Resource Allocations 

We define a workspace’s resource allocation as those resources directly available 
to the workspace. This allocation does not include additional (overhead) resources 
that the resource provider requires to support the workspace’s execution.  

We model a resource allocation as a ResourceAllocation element, based on the 
JSDL [20] Resources element, with extensions as highlighted in Figure 1. Time is 
specified as start time and duration of deployment (in practice, only current start time 
is supported). Memory size is also specified as single value. CPU type is specified as 
a list of architectures (e.g., x86, IA64, x86_64) and percentage pairs to accommodate 
workspaces with multiple CPUs. Storage and networking are also specified as 
potentially multiple resource slots with salient characteristics; for example, in the 
Edge Services example, the two networking slots are used for private and public 
connection, respectively. The Storage element may describe one or more partitions 
in terms of size and read/write speeds. (This information may determine if partitions 
need to reside in local storage or may be remote.) The networking element specifies 
the incoming and outgoing bandwidth, as measured by the iperf program for a virtual 
NIC. The values of duration, CPU percentage, size, read/write speed and bandwidth 
can be specified as JSDL RangeValue term. Currently, only exact values (JSDL 
Exact) and lower-bound open-ended ranges (JSDL LowerBoundedRange, interpreted 
to mean “the assigned value or more”) are supported.  

All values specified as part of ResourceAllocation can be specified as a 
ranges of acceptable values in a request (e.g., 50-60% of CPU), thus allowing a client 
to pose open-ended resource requests to be concretized by the workspace service on 
acceptance. Feasible resource allocation ranges are published by the workspace 
factory service, much like WS-Agreement agreement templates [19]. Information 



about feasible ranges takes into account resource coordination; for example, the 
current workspace service policy does not allow clients to specify resource allocations 
that cannot be realized as in the case where not enough CPU is requested for a certain 
network bandwidth.  

Shaping resource assignment policy for a specific workspace has four stages: (1) a 
client defines a requested resource allocation, (2) the resource allocation is assigned 
based on negotiation with the resource provider, (3) the assigned resource allocation 
is published, and (4) the resource allocation is potentially renegotiated. Our current 
implementation uses a simple all-or-nothing negotiation strategy: a requested 
resource allocation is sent as part of the Workspace Service’s create operation and is 
either accepted or rejected based on resource availability. If accepted, the assigned 
resource allocation (which concretizes value ranges of the requested resource 
allocation) is published as a WSRF resource property of the workspace.  

Renegotiation is achieved by updating the resource property values. This updating 
can be performed either by sending a completely new resource property description or 
by requesting the adjustment of a specific value (e.g., CPU percentage). In the latter 
case, the request is interpreted as if the existing resource allocation value was sent 
with the adjusted value. As with workspace creation, the result of this operation is 
subject to the same all-or-nothing strategy. If the request cannot be satisfied the 
workspace deployment is not disrupted; if it can, new resources are assigned.  

 
 

Figure 1: The Resource Allocation Element  

A client request may specify requirements for only some of the resources: for 
example, only memory and CPU. In such cases, default values for other resources are 
assigned by the workspace service. These default policies are published as resource 
properties by the workspace factory service. The current implementation provides 
only a “best effort” policy, we are experimenting with more controllable defaults, e.g. 
preventing service starvation through overbooking of memory or other qualities.  



4.2   Enforcing the Resource Allocation  

Our current VM-based workspace implementation deploys workspaces on a pool of 
resources configured with a hypervisor, and interacts with those workspaces through a 
configurable back-end. We focus in this paper on an implementation based on the 
Xen hypervisor [9]. In Xen, privileged hypervisor interaction usually takes place in 
domain 0, which allows a client to create and manage other virtual machines (called 
user or guest domains).  

The physical memory size allocated to a Xen domain is specified when the domain 
is created. This memory size can be adjusted after startup using Xen’s balloon driver. 
Two flavors of disk allocation are needed: obtaining storage for disk partitions that 
form a part of a VM image, and providing extra writing space for the VM. We 
address the former requirement by mounting the VM partition as a loopback device. 
(A physical partition on the local disk could also be mounted, but those are already 
allocated.) We address the latter requirement by allocating space from network 
filesystems or by creating new, blank loopback images. For best access and write 
times, both read and write partitions should be mounted from whichever site disk can 
offer the best performance within the requested allocation. In order to accomplish this 
goal of best performance, the workspace service keeps track of available local disk 
space on various resources and uses the “size” element in partition meta-data to 
schedule workspace deployment.  

To enforce the CPU allocation we used the Xen Simple-Earliest Deadline First 
(SEDF) [23] scheduler, which provides weighted (i.e., percentage based) CPU sharing 
between domains. Weights can be specified exactly, or alternatively the scheduler can 
be allowed to give a domain extra CPU cycles if they are available, in which case it 
provides at least the specified weight. In practice, the latter policy results in better 
overall performance and was used throughout our experiments. The assigned CPU 
share as well as the policy can be changed dynamically. For CPU-intensive domains, 
we found that an assignment of 5-10% to domain 0 gave a good balance.  

Effective resource allocation frequently requires coordinating more than one 
resource dimension. For example, when requesting a bandwidth allocation to a 
workspace, we have to ensure not only that the incoming/outgoing message rate is 
limited but also that the CPU share assigned to both the workspace and hypervisor 
overhead is sufficient to process messages. Since domain 0 in Xen acts like a switch, 
switching traffic to user domains, we have to maintain a balance between weights 
allocated to domain 0 and the guest domains: while domain 0 needs to process all 
incoming messages, giving it more weight at the cost of guest domains may result in 
poor performance as the guest domains are unable to process traffic in a timely 
fashion. In addition, while scheduling a domain more often improves the latency of 
this domain (as it is able to receive messages faster), it also results in higher context 
switching and thus CPU cost. 

To develop rough guidelines for managing these tradeoffs, we conducted a 
parameter sweep over different CPU allocations for up to eight deployed domains, 
with the goal of obtaining an aggregate bandwidth to those domains within 1% of the 
maximum bandwidth achievable for our hardware (described in Section 6). We found 
that while CPU allocations for both the hypervisor and guest domains can vary due to 
various factors, it was possible to obtain acceptable bandwidth (within 1% of 



maximum for our hardware) by using bounds on those settings. Specifically, we 
adopted a bound of 20% of CPU for the domain 0 setting and guest bounds dependent 
on the number of guest domains. (For example, for the two domains case described in 
Section 6, the aggregate bound was 20%.)  

The workspace service then bases its allocation decisions on those bounds and 
admits only allocations that can be supported within them. We find in our 
experiments that there is often a substantial difference between actual CPU utilization 
and the CPU weight assigned (typically less CPU gets used). However, weights are 
important to obtain the desired bandwidth. In addition, we find that while our bounds 
on CPU weights simplify resource management, they also allow further inefficiency 
to burden the system. Thus, our present SEDF-based resource management strategy 
for CPU allocations is approximate and sacrifices much utilization to compensate for 
the relative lack of control that SEDF provides over CPU allocations for I/O intensive 
operations. Work on alternative schedulers that address the SEDF shortcomings 
leading to this inefficiency is underway [24, 25] and we plan to explore such 
alternatives in the future.  

Xen does not implement controlled bandwidth sharing itself, so we rely on Linux 
network shaping tools [26] for that purpose. We again take advantage of the facts that 
the network interface of each domain is connected to a virtual network interface in 
domain 0 by a point-to-point link and that traffic on these virtual interfaces is handled 
in domain 0 using standard Linux mechanisms for bridging, routing and rate limiting. 
To implement bandwidth sharing (for both incoming and outgoing bandwidth) we 
limit the rate of network traffic going to and from the respective domains using the 
Hierarchical Token Bucket queuing discipline [27]. To implement this behavior, we 
needed to recompile the domain 0 kernel. We developed an API to the Linux tools 
that allows us to set the bandwidth rates for created domains. We also increase the 
domain 0 CPU allocation by 2% to manage bandwidth splitting for user domains.  

5   Case Study: Edge Services Framework 

The Edge Services Framework (ESF) has been developed to decouple the tasks of (a) 
configuring and managing VO service nodes and (b) providing resources, thus 
allowing for division of labor between VO administrator and site administrator. ESF 
achieves this decoupling by leveraging the workspace abstraction to allow a VO 
administrator to configure an Edge Service image and deploy it based on need and 
resource availability.  

ESF consists of a workspace image library, image transport and storage 
mechanisms, and the workspace service. The image library contains base images 
(basic OS configuration, at present including Scientific Linux 3/4, CentOS 3/4, and 
Fedora Core 4) and fully configured Edge Services images, currently including the 
ATLAS DASH service [28] and CMS FroNtier [29]. Since Edge Service images can 
be large in size (5 to ~10 GB), ESF uses compression and fast transport mechanisms 
(GridFTP [30]) as well as high-end Storage Elements (SEs) such as dCache [31]. 

The role of a VO administrator is to prepare, configure, and test an ES image. The 
image can then be shared within the VO, transported to deployment sites, and stored 



within the local site SE, where it can be retrieved for deployment by any VO 
administrator. In the current deployment, images stored on a site are further  manually 
configured with required IP addresses and a pre-generated credential. We are working 
to automating those latter tasks as part of workspace deployment [21]. 

The role of a site administrator is to provision hardware resources that can be used 
for Edge Services and to ensure the proper configuration and maintenance of those 
hardware resources. In our testbed these tasks include configuring hardware resources 
with Xen, and providing one deployment of the workspace service per site. A site 
administrator also provisions storage space in a local Storage Element for storage and 
retrieval of ES images. 

During site operation, Edge Service workspaces are dynamically retrieved, 
provisioned, and deployed by a VO administrator authorized using their VOMS 
credentials [32]. For example, when working with ATLAS analysis jobs requiring a 
database cache of a specific type, an ATLAS administrator deploys the DASH Edge 
Service. On deployment, the cache initializes using remote data repositories over its 
public network connection and is then available on the private network to the jobs 
submitted by ATLAS users to the site.  

The current ESF deployment spans both integration-level testbed sites and 
production-level sites on OSG. Integration-level sites include Argonne National 
Laboratory, Fermilab, University of Chicago, and UCSD. The production-level 
deployment is at DISUN [33] at SDSC.  

6   Experimental Evaluation 

To evaluate the usefulness of our approach, we performed experiments in a 
configuration comprising two VOs, VO1 and VO2. Each VO deployed an Edge 
Service on the same physical node, an AMD Athlon MP 2200 (booted in single CPU 
mode) with 2GB memory and a GB NIC over a 100 Mbps switch. The machine was 
configured with Linux 2.6.12 and Xen 3.0. The Edge Services were managed using 
our workspace service deployed on a different node than the services themselves and 
receiving requests from VO clients running on separate nodes.  

6.1  Managing Execution Request Throughput 

We first examined to what extent running within workspaces helps implement 
policy-regulated sharing between VOs. For this experiment, we modeled the work of 
a Compute Element (CE) by configuring an Edge Service with the GT4.0 GRAM 
service receiving non-staging requests (/bin/date) from the two VO clients. To 
simulate high load on VO1, we used an additional load client that submitted to VO1 a 
job performing 2 million square root operations every 10 seconds. 

We considered a scenario in which one VO receives high request load in two 
different settings: (1) a physical machine setting in which the CE is deployed directly 
on the physical machine and used by both VOs (reflecting the situation in most 
current deployments), and (2) the workspace setting in which each VO deploys the 



CE in a Xen workspace, and each negotiates a resource allocation of at least 45% 
CPU weight and 896 MB of memory (domain 0 is set to 10% of CPU and 256 MB).  

In both the physical and workspace setting, we measured the end-to-end job 
throughput of VO1 and VO2 clients. The job submission throughput was calculated 
over a period starting after the CE was saturated with load to a period when the VO2 
client stopped submitting. As expected, the physical scenario resulted in roughly the 
same (low) request throughput for both VO clients (7.83 jobs/minute for VO1 and 8.0 
jobs/minute for VO2), as the pre-existing VO1 load impacted both equally. In the 
workspace scenario, all VO1 request load is confined to VM1. Thus, we see worse 
throughput for VM1—4.18 jobs/minute—but observe that the request throughput for 
VO2 is now unimpacted by VO1 load and increases to 22.36 jobs/minute. 

To observe CE behavior more closely over time, we summed the number of 
completed requests for VO1 and VO2 clients respectively during regular intervals 
(every 30 seconds) and plotted this number against time. (The values shown are an 
average of 5 trials and all fall within 10% of the average.) Figure 2 (left) shows the 
comparison: VO2 has consistently high throughput while VO1 has low throughput 
until VO2 client stops sending requests, causing VM2 to temporarily stop consuming 
resources. VO1 is then able to claim a larger CPU weight and obtain more processing 
power (at 600 seconds the load client ceases to submit and the throughput improves 
further). Even when we varied the load coming from the load client by doubling or 
tripling its operations, the VO2 request throughput was unimpacted (right side of 
Figure 2) and stayed at the same level independently of the load on VO2. 

 

Figure 2: Request throughput for VO1 and VO2. The graph on the left compares request 
throughput for VO1 and VO2 over time. The graph on the right shows that the VO2 request 
throughput remains unimpacted in the presence of increasing load on the physical machine. 

6.2. Managing Network Traffic 

In this experiment we model a situation that might be experienced during the 
operation of a Storage Element (SE), in which two VOs run services requiring heavy 
network traffic. As in the previous example, running the SE inside one workspace 



does not result in fair sharing. Unlike our previous example, effectively managing 
such traffic requires simultaneous management of two qualities: the bandwidth leased 
to each workspace assigned to the respective VOs, and the CPU share required to 
support the processing of message arrival rates.  

Our experimental scenario is the same as in the previous experiment. To isolate 
network performance, we modeled the work of an SE with a GridFTP 4.0.1 
performing memory-to-memory transfers. In our scenario both VO1 and VO2 have 
each negotiated a resource allocation of 128 MB memory, 6% CPU weight and 4.1 
MB/s raw bandwidth (the CPU weight is the minimum needed to process this 
bandwidth as per our baseline). The workspace service allocates a weight of 22% to 
domain 0; all remaining CPU share is always taken up by an additional CPU-intensive 
domain to ensure enforcement.  

Figure 3 shows a time trace of the behavior of the two workspaces. VO2 processes 
a steady stream of requests and saturates its bandwidth from the beginning of the 
trace. VO1 performs transfers of various sizes for a while and then it too begins to 
saturate its bandwidth (~150 seconds of the trace). Note that neither domain achieves 
the raw 4.1 MB/s bandwidth due to application (GridFTP) overhead. After about 240 
seconds (first arrow mark on the graph), the VO1 renegotiates its allocation to request 
a higher bandwidth of 8.2 MB/s requiring at least 14% of CPU (as per our baseline 
transfer utility measurements). As a result the workspace service adjusts the CPU 
settings (from 6 to 14) as well as bandwidth settings (from 4.1 to 8.2) on the 
hypervisor node and the bandwidth for VO1 goes up. To compensate for application 
overhead, the VO then further renegotiates just the CPU weight from 14 to 34 which 
brings performance closer to the desired bandwidth.  

 

 
Figure 3: Isolating SE for VO1 and VO2; the arrows indicate renegotiation points. 

Renegotiation (Figure 3) takes about 7 seconds. Most of this time (~5 seconds) is 
taken by SEDF weight adjustments, a factor that is responsible for the indentation in 
the graph during negotiation time. Increasing the domain 0 allocation speeds up this 
processing, at a cost of lower guarantees offered to user domains. The times taken by 
bandwidth adjustment and end-to-end request processing are ~400 ms and ~300ms 
(WS overhead), respectively. 



7  Conclusions  

Our deployment and experimental experiences lead us to conclude that workspaces 
are a promising “division of labor” tool for providers and consumers. We believe that 
this conclusion is especially true in situations in which the task of understanding 
interdependencies among various load-causing factors is complex, and indeed 
potentially impossible to manage at the application level. Load management on OSG 
service nodes is an example of such a situation, due to the complex and time-varying 
workloads that may be generated by different clients. 

The ability to negotiate and renegotiate resource allocations is particularly 
important, both to the client and the provider. This ability allows both client and 
provider to react to changing load conditions and optimize their provisioning to 
satisfy targets, for example by requesting more CPU to account for application 
overhead in the GridFTP example. Additional flexibility can be obtained by using 
migration, as demonstrated  by Clark et al. [34] for an application similar to ours.  

Our results indicate that it is useful to support “aggregate” resource allocations that 
combine, for example, bandwidth and CPU allocations, for the reason that an 
allocation of one resource (e.g., bandwidth) may be wasteful unless matched by at 
another (e.g., at least a minimal CPU allocation to match a bandwidth allocation). It is 
a useful aid, and potentially a useful policy, for the resource provider to publish offers 
of such “bundled” allocations. 

Finally, while we managed to obtain reasonable results in bandwidth-related 
allocations with the SEDF scheduler, we also found that tractable allocations with this 
scheduler are hard to determine for management purposes, enforce, and account for, 
both in terms of hypervisor overhead and actual guest domain usage. Ongoing work 
on credit-based schedulers [24, 25] may overcome some of those issues. Our 
approach was to use bounds within which allocations could be supported. However, 
this approach can introduce inefficiencies, which may decrease utilization for the 
resource provider.  
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