
Enabling Cost-Effective Resource Leases with Virtual Machines

Borja Sotomayor1, Kate Keahey1,2, Ian Foster1,2, Tim Freeman1,2

1University of Chicago, Chicago, IL
2Argonne National Laboratory, Argonne, IL

borja@cs.uchicago.edu {keahey, foster, tfreeman}@mcs.anl.gov

1. Introduction

Leasing resources for short periods of time can be of
great value to many applications. Applications
consisting of workflows of small tasks (such as
Montage [5], GADU [6] or fMRI [7]), can be more
efficiently scheduled by a workflow engine (e.g.,
Pegasus [8] or Swift [9]) when using leased resources
than when each request must pass via a traditional
scheduler. Interactive applications (where the user must
use the application at a specific time), real-time
applications, or applications requiring resource
coscheduling (e.g., to provision resources for a parallel
job running across several sites) may further require an
advance reservation capability [18]. While the first
group of requirements can be addressed to some extent
by using multi-level scheduling (e.g., as implemented
by Condor [10], MyCluster [12], and Falkon [13]), or
task clustering [11], achieving stricter lease semantics
(such as advance reservations) is typically difficult. This
is because advance reservations often lead to utilization
problems in the scheduler caused by the need to “drain”
jobs off of a group of resources before the
job/reservation starts.

We argue that the use of virtualization can help
overcome those problems. The ability of virtual
machines (VMs) to seamlessly suspend and resume
computations can enable a scheduler to use batch
computations, which have loosely defined availability
requirements, to backfill around leases with strict
availability requirements, such as advance reservations.
Providing cost-effective leasing mechanisms, which
would also use VMs to allow deployment of arbitrary
software environments, would increase the usefulness
of short-term leases to clients and make providing them
more attractive to the resource provider.

We also argue that, by making leasing more cost-
effective, we can support a multi-level scheduling
model, by decoupling resource provisioning from
execution management [1]. The ability to provision
short-term leases creates an opportunity for scientific
applications that require multi-level scheduling to
support application-specific scheduling (e.g., a Swift [9]

workflow where groups of tasks are managed by the
Falkon [13] execution framework, not by a site-specific
scheduler).

Thus, we propose an architecture that uses VMs to
make on-demand short-term leasing of resources cost-
effective. This architecture allows resource providers to
satisfy short-term leasing requests while continuing to
support existing workloads (i.e., batch processing). We
show via experiment that using virtualization for this
purpose can achieve improved performance, both from
the provider's perspective (throughput) and the user's
perspective (running time), even in the presence of
overhead incurred by using VMs. Our approach also
allows a provider to both offer leases and run jobs
associated with a particular execution environment
(implemented by a VM) and rapidly switch between
such software environments, providing added
incentives for resource leasing.

This work is done in the context of our research into
virtual workspaces [1, 2]. We represent and manage
short-term leases as VM-based virtual workspaces. Our
results build upon previous work that explored the
combination of workspaces with traditional batch
computation [3, 4].

2. Approach

Our architecture enables a multi-level scheduling
approach by separating resource provisioning from job
management and providing interfaces for each. The
former is handled by a lease manager component
developed by us, while the latter can be handled by the
resource provider’s existing scheduler. We can extend
existing schedulers [16, 17] to support virtualization in
such a way that resource providers can provide short-
term leases to their users in a cost-effective way, while
continuing to use their existing job management
software stack for batch computations.

In our system, resource provisioning is handled by
the lease manager, which more properly becomes the
site’s LRM. Users can request short-term leases directly
to the lease manager, and use the allocated resources for
any purpose, including task-driven computations where
users could deploy their own task managers, and not
necessarily rely on the site's existing one. Users can
continue to submit batch requests through the existing
LRM, which can internally leverage the lease manager
to provision resources.

Our leasing semantics can be more expressive than
those provided by existing schedulers, allowing
availability periods to be defined by a variety of agreed-
upon events, such as specific timer events (a lease that
must start at a specific time) or resource events (best-
effort provisioning as resource become available). We
will also explore resource renegotiation semantics for
resource leases.

3. Implementation

We are implementing a proof-of-concept that has
already resulted in encouraging results [4]. Our ongoing
implementation work shows that, by using the
suspend/resume capability of virtual machines, batch
computations and timer-driven leasing requests (such as
advance reservations) can be interleaved in such a way
that resources do not have to be backfilled and
“drained” before the start of a lease (see Figure 1),
resulting in improved resource utilization. Suspending
batch computations is not a novel concept, as many
existing resource managers, such as Condor and SGE,
allow checkpointing. However, this feature is primarily
used for fault tolerance purposes and generally requires
modifying a job’s executable to explicitly support
checkpointing, or depends on the presence of a
checkpointing-capable operating system.

We aim to process batch workloads and short-term
leases efficiently even in the presence of the runtime
and deployment overhead associated with VMs. The
latter results from the need to manage and transfer
potentially large VM images, necessary to dynamically
deploy different software environments, and is handled
by integrating application-specific knowledge into our
scheduling policies. In particular, our scheduling
algorithms must be aware that VMs are being
scheduled, which requires overhead (such as image
transfers) to be managed adequately if we want to
guarantee accuracy in meeting the availability
requirements of leases.

4. Experiments

To validate the proposed architecture, we ran
experiments that simulate both artificial and real
workloads combining batch workloads with short-term

leases. The real workloads are based on execution traces
collected from the Jazz cluster [15] at Argonne National
Laboratory. The experiments compare the performance
obtained when using advance reservations (as currently
supported by LRMs like PBS Pro and SGE) to
represent short-term leases and the performance when
those short-term leases are represented using VMs in
our approach. We measure performance from the point
of view of the resource provider (throughput, or the rate
at which batch jobs and short-term leases are
completed) and the point of view of the user (the
completion time of jobs and short-term leases). These
experiments are a continuation of previous work [3, 4].

Our preliminary results (not included due to lack of
space; some of these results are presented elsewhere
[4]) show that using the suspend/resume capability of
VMs can result, under most conditions, in better
performance even when accounting for the slowdown
resulting from running inside a VM. These results also
show that, even when working with a significant
number of different VM images (which may result in
considerable amounts of deployment overhead as large
VM images need to be transferred to the nodes where
they are needed), we can still achieve performance that
is equal or better to running on physical nodes by
adequately managing the deployment overhead.

5. References
[1] K. Keahey, I. Foster, T. Freeman, and X. Zhang,

“Virtual Workspaces: Achieving Quality of Service and
Quality of Life in the Grid”, Scientific Programming
Journal, vol 13, No. 4, 2005, Special Issue: Dynamic
Grids and Worldwide Computing, pp. 265-276.

Figure 1: Difference between job and VM
representation of a lease

[2] T. Freeman, K. Keahey, I. Foster, A. Rana, B.
Sotomayor, F. Wuerthwein, “Division of Labor: Tools
for Growth and Scalability of Grids”, ICSOC 2006.

[3] B. Sotomayor, K. Keahey, I. Foster, “Overhead
Matters: A Model for Virtual Resource Management”,
VTDC 2006 (workshop), in Supercomputing 06,
November 2006.

[4] B. Sotomayor, “A Resource Management Model for
VM-Based Virtual Workspaces”, Masters paper,
University of Chicago, February 2007.

[5] G.B. Berriman, et al., “Montage: a Grid Enabled
Engine for Delivering Custom Science-Grade Image
Mosaics on Demand”, Proceedings of the SPIE
Conference on Astronomical Telescopes and
Instrumentation, 2004.

[6] GADU. http://compbio.mcs.anl.gov/gaduvo/
[7] The Functional Magnetic Resonance Imaging Data

Center. http://www.fmridc.org/
[8] Pegasus. http://pegasus.isi.edu/
[9] Swift. http://www.ci.uchicago.edu/swift/
[10] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke,

“Condor-G: A Computation Management Agent for
Multi-Institutional Grids”, Cluster Computing, vol. 5,
pp 237-246, 2002.

[11] G. Singh, C. Kesselman, E. Deelman, “Performance
Impact of Resource Provisioning on Workflows”,
Technical Report 05-850, Department of Computer
Science, University of South California, 2005.

[12] E. Walker, J.P. Gardner, V. Litvin, E.L. Turner,
“Creating Personal Adaptive Clusters for Managing
Scientific Tasks in a Distributed Computing
Environment”, CLADE 2006 (workshop), in HPDC-15,
June 2006.

[13] Raicu, I., Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde,
“Falkon: a Fast and Light-weight tasK executiON
framework”. Submitted to SuperComputing 2007.

[14] S. Srinivasan, R. Kettimuthu, V. Subrarnani, and P.
Sadayappan, “Characterization of backfilling strategies
for parallel job scheduling”, ICPPW 2002.

[15] Jazz Cluster. http://www.lcrc.anl.gov/jazz/
[16] Sun Grid Engine. http://gridengine.sunsource.net/
[17] PBS. http://www.openpbs.org/
[18] W. Smith, I. Foster, V. Taylor, “Scheduling with

Advanced Reservations”, in Proceedings of the
14 th International Parallel and Distributed
Processing Symposium , May 2000.

http://compbio.mcs.anl.gov/gaduvo/
http://www.openpbs.org/
http://gridengine.sunsource.net/
http://www.lcrc.anl.gov/jazz/
http://www.ci.uchicago.edu/swift/
http://pegasus.isi.edu/
http://www.fmridc.org/

	1. Introduction
	2. Approach
	3. Implementation
	4. Experiments
	5. References

