
Cumulus: An Open Source Storage Cloud for Science
John Bresnahan

Mathematics and CS Division

Argonne National Laboratory

bresnahan@mcs.anl.gov

David LaBissoniere
Computation Institute

University of Chicago

labisso@uchicago.edu

Tim Freeman
Computation Institute

University of Chicago

freeman@mcs.anl.gov

Kate Keahey
Mathematics and CS Division
Argonne National Laboratory

Computation Institute
University of Chicago

keahey@mcs.anl.gov

ABSTRACT

Amazon’s S3 protocol has emerged as the de facto interface for

storage in the commercial data cloud. However, it is closed source

and unavailable to the numerous science data centers all over the

country. Just as Amazon’s Simple Storage Service (S3) provides

reliable data cloud access to commercial users, scientific data

centers must provide their users with a similar level of service.

Ideally scientific data centers could allow the use of the same

clients and protocols that have proven effective to Amazon’s

users. But how well does the S3 REST interface compare with the

data cloud transfer services used in today’s computational

centers? Does it have the features needed to support the scientific

community? If not, can it be extended to include these features

without loss of compatibility? Can it scale and distribute resources

equally when presented with common scientific the usage

patterns?

We address these questions by presenting Cumulus, an open

source implementation of the Amazon S3 REST API. It is

packaged with the Nimbus IaaS toolkit and provides scalable and

reliable access to scientific data. Its performance compares

favorably with that of GridFTP and SCP, and we have added

features necessary to support the econometrics important to the

scientific community.

Primary Classification:

J.0 [Computer Applications]: General

General Terms
Management, Performance, Reliability

Keywords

Storage Cloud, Private Cloud, Infrastructure as a Service (IaaS),

Data Transfer, Amazon’s Simple Storage Service (S3)

1. INTRODUCTION
Storage clouds represent a fusion between data transfer and

storage; two actions that up to now were usually considered and

optimized separately. The emergence of storage clouds as a useful

model raises several questions. To what extent can the existing

scientific storage systems be adapted to fit this model? Are

existing file/storage management tools suitable for cloud

computing? Can we build a storage cloud using a combination of

existing tools? How will such a combination need to be adapted to

satisfy the expectations of scientific users? What are the

performance characteristics of such adaptations, and how can they

be improved? Answering these questions provides a path to better

leverage the existing knowledge and experience in building

storage clouds.

Outsourcing compute and storage infrastructure has many

potential benefits. It can provide access to more sophisticated

resources than the outsourcing institution can afford to own and

operate, it supports more flexible use of such resources, it creates

the potential for leveraging economies of scale via consolidation,

and it eliminates the overhead of system acquisition and

operation. Many outsourcing models have been tried, from multi-

institutional sharing to grid computing and commercial hosting

services. Recently, cloud computing [1] emerged as a new

outsourcing paradigm that quickly became successful in many

commercial venues. Infrastructure as a Service (IaaS) is the most

flexible of the mechanisms collectively known as cloud

computing; it offers scientists access to computational and storage

resources on a on-demand, pay-as-you-go basis.

Storage outsourcing is of particular importance to scientific

research, where volumes of data produced by one community can

reach the scale of terabytes per day [2, 3]. Sharing and processing

of such data require careful planning and trade-off considerations

that could be greatly facilitated by storage on-demand services

such as those provided by Amazon Simple Storage Service (S3)

[4] or Rackspace [5]. For this reason, the study of such services

from the perspective of scientific needs attracted early attention

[6, 7]. The commercially offered services are closed, however,

and thus can be only partially studied. Deep evaluation of the

potential of cloud computing as an outsourcing model requires the

ability to experiment with the paradigm.

In this paper, we present Cumulus—a storage cloud system

that adapts existing storage implementations to provide efficient

upload/download interfaces compatible with S3, the de facto

industry standard. While this compatibility enables users to easily

move between academic and commercial clouds, Cumulus also

conforms to scientific community expectations by providing such

features as quota support, fair sharing among clients, and an easy-

to-use, easy-to-install approach for maintenance. The most

important feature of Cumulus is its well-articulated back-end

extensibility module. It allows storage providers to configure

Cumulus with existing systems such as GPFS [8], PVFS [9], and

HDFS [10], in order to provide the desired reliability, availability

or performance trade-offs. Cumulus is part of the open source

Nimbus toolkit [11, 12], where this “use what you have” approach

has also been successfully used to provide a compute cloud

service that can be used with batch schedulers [13].

We first describe Cumulus architecture and implementation.

We next evaluate Cumulus from the perspective of

upload/download efficiency and compare it with representative

tools used in the scientific community. We then demonstrate how

Cumulus scales over multiple storage servers, and we evaluate the

efficiency of such scaling in the context of the GPFS storage

system used on many scientific clusters.

2. CUMULUS DESIGN
Cumulus provides two functions. First, it allows users to

accumulate and manage data: upload data to the cloud, monitor its

status, and download it from the storage cloud as needed. Second,

since this data can in particular represent VM images, Cumulus

also provides an image store for Nimbus compute clouds. Users

can use client tools—provided either by Amazon for interaction

with S3 or by other third-party tool providers—to access those

functions. Since Cumulus is integrated with the Nimbus

workspace service, the users can also access Cumulus functions

through the Nimbus cloud-client features to upload and download

images.

Figure 1: Cumulus architecture

The architecture of Cumulus, shown in Figure 1, is simple

and modular, with particular care taken to provide extensibility

options at various design levels. The Cumulus Interfaces layer

exposes the interface to the service and contains modules

interpreting and authorizing client commands. The current

implementation supports only Amazon’s S3 REST protocol, the

de facto commercial standard storage cloud interface. Thus, many

client libraries and tools, including s3cmd [30], boto [31], and

jets3t [32], can be leveraged by Cumulus users. Simply put, the

S3 interface allows clients to write, read, and delete objects

(equivalent of files) or organize them into buckets (equivalent of

directories). Furthermore, Cumulus interfaces support

simultaneous upload to a single object without the risk of data

corruption; and, like S3, it supports the notion of eventual

consistency [14].

Authentication mechanisms, based on request signature by

symmetric key, are provided to ensure that data is kept secure.

When a request is made to the service, the authorization database

is checked to verify that the user is known and is allowed to

perform the requested action on the specified bucket and object.

Object permissions are set with an access control list (ACL),

which allows a group of users to share data with a rich set of

controls according to the S3 protocol [4]. For example, a user can

grant read access to one user and write access to another without

having to worry about defining user groups. The authorization

module handles this functionality without exposing the remainder

of the body of code to these details. This allows for different

authorization implementations to be created and enabled.

The Cumulus Redirection module is used to handle

scalability. This portion of Cumulus keeps track of the workload

of the service and decides to either accept a new client connection

or redirect that client to a replicated server.

The Cumulus Service Implementation encompasses a set of

modules that implement the functionality needed to convert an

API request into an action on the storage system and record all

important events along the way. When a user requests that a

bucket be created, this component logs the request, checks that the

request is allowed against quota and ACL restrictions, and then

invokes the appropriate method on the Storage API. Cumulus

configuration files are interpreted and respected in this module.

Along with this component is a set of command-line tools that

allow a user easily to create new users, alter and delete existing

users, and manage the users storage quotas.

The Cumulus Storage API is a modular system that allows

administrators to choose what backend storage system they wish

to use. It abstracts the details of sourcing and sinking data from

the rest of Cumulus via the various Implementations—Cumulus

plug-in modules. Similarly, these plug-ins need not be concerned

with the details of security, HTTP, or S3. This design allows for

fairly easy creation of a storage module and thus integration with

most storage system, whether they are simple like local file

systems or sophisticated like HDFS. This modular approach to

storage system is a key design feature of Cumulus.

Creating a storage module involves the implementation of

two abstract classes. The first is a file management class with

interface operations for actions such as the creation or deletion of

a bucket or the uploading, downloading, or deleting of an object.

The second class is responsible for streaming the data to the

storage object. This class behaves similarly to an open file. The

creation of a storage module is expected to be a moderately easy

task involving about two to three hundred lines of python code.

In order to achieve Amazon levels or availability, vast

amounts of hardware expenses need to be incurred. Some users

may need such levels, but others have more modest requirements.

Some storage clouds have the resources simply for a single node;

for these, a local disk is all that is needed to back their system,

without having to deal with complicated setups. Other storage

clouds have a cluster of nodes to back their storage system; such

setups typically have shared or parallel file systems like GPFS [8],

PVFS [9], or NFS [16] and can use them to back their Cumulus

storage cloud. More sophisticated clouds may have highly

available data stores like HDFS [10], Sector [17], or Cassandra

[18] to back their systems. Our goal is to enable all those different

types of storage to be used in the creation of clouds.

3. IMPLEMENTATION
Cumulus is implemented in the python programming

language as a REST service. Twisted Web [19] is used to handle

the marshaling of the HTTP and HTTPS protocols The Cumulus

service implementation handles interpreting the REST API and

converting it to the Cumulus API. The Cumulus API is a set of

python objects that are responsible for handling specific user

requests.

The Cumulus default authorization module is implemented

with the database sqlite [20]. Because sqlite is often limited to a

local file system (the details here depend on the use of a shared

file system that safely supports locking), this module cannot be

used in a replicated configuration. However, a slightly modified

version of this module exists that uses postgres [21]; this allows

Cumulus to be configured as a replicated and scalable service. An

additional light-weight module has been created that uses simple

text files for managing access to security information.

The Cumulus package released by the Nimbus project

includes the POSIX data storage module. Because of the success

of FUSE [22], this module is powerful and allows for immediate

integration with HDFS, SECTOR, and many other file systems.

Additionally we have a BlobSeer [33] module that is a research

extension.

Many Cumulus servers can be configured to run on separate

machines all accessing a shared data store such as GPFS. This

replicated pool of Cumulus servers can then be used to handle a

higher client load. The replication module decides whether a

redirection is needed and, if so, to which replicated server the

client will be redirected. The current release of Cumulus has two

redirection modules (both used in our experiments): random and

round robin. In both modules a list of all replicated servers is

stored in a file (the contents of this file can change without

needing to restart the Cumulus servers). Each service is given this

file and an integer known as the redirection point. The modules

keep track of the total number of current client connections. If that

number exceeds the redirection point, a new host is chosen from

the list.

The modules differ in how they choose a new host. The

random module selects a new host from the list at random. The

round-robin module iterates through the list, selecting a new host

every time and starting over at the beginning once the list is

exhausted. Both algorithms include the current host in their

redirection candidates. If the current host is selected, the request is

handled without redirection.

4. EXPERIMENTS
To assess the viability of Cumulus as a storage cloud for

science, we ran a set of experiments on the FutureGrid’s Hotel

resource [23]. The compute nodes used in the study were 8-core 4

Xeon 2.40 GHz processors equipped with 24 GB of RAM and 1

Gbps network interfaces (including the c1.uc.futuregrid.org and

c2.uc.futuregrid.org nodes we refer to below), connected via a

Juniper EX4200 network switch. At the time the fair sharing and

performance experiments were run, the nodes were configured to

use just 512 MB of memory in order to create resource contention

conditions. For the remaining experiments we used the full 24 GB

of RAM.

In our experiments we refer to the “client node”

(c1.uc.futuregrid.org) host and the “service node”

(c2.uc.futuregrid). In our scalability study we had a total of 20

nodes at our disposal for the experiment. In this case all nodes

were identically configured as those described above with the

exception that they had the full 24 GB of RAM.

4.1 Performance

To evaluate the performance of Cumulus, we ran a series of

experiments comparing it with the two most commonly used data

transfer services in the scientific community: GridFTP [24] and

SCP. GridFTP has set the standard for data transfer performance,

and SCP is the ubiquitous transfer service that users turn to when

they want a simple and immediate solution.

Our experiments compared the throughput obtained by all

three tools in uploading and downloading a file. We used the

following standard command-line interface tools to perform the

transfer with their respective service: for GridFTP we used

globus-url-copy; for SCP, the scp command; for Cumulus, the

s3cmd. The speed of the file system was measured by using

Bonnie++ [25]. The throughput was calculated by dividing the

file size by the time each command took to complete.

Typically, data transfer services perform best on files of a

significant size, because small files have a low payload-to-

overhead ratio. The optimal file size for any given transfer service

varies slightly depending on details of the protocol and

implementation. Hence, we chose to show the results starting with

a small file and gradually increasing the file size, allowing us to

see the relative trends. Specifically, in our experiments we

measured the time all three services took to both upload and

download a range of file sizes from 2 MB to 2 GB , doubling the

file size for each new measurement. We took 10 measurements for

each file size; our results display the mean of 10 trials (with

standard deviation less than 1 for most measurements).

Figure 2: Comparison of upload throughput

Figure 3: Comparison of download throughput

The results in Figures 2 and 3 show that the performance of

Cumulus is on a par with the most common and best-performing

data transfer services in use today. GridFTP and Cumulus display

similar performance characteristics; in fact, Cumulus slightly

outperforms GridFTP for file sizes larger than 512 MB. The spike

in GridFTP performance just before the 512 MB file size (visible

particularly in Figure 2) is an artifact of GridFTP memory

buffering techniques. We plan to investigate whether applying

similar buffering strategies would be useful in Cumulus without

breaking its storage semantics.

4.2 Fair Sharing

The fair sharing experiment evaluates to what extent we meet

our goal to equally ration resources to clients. In the study we

operated a single Cumulus service instance and had 32 clients

simultaneously upload or download a single 512 MB file; we

measured the upload and download time for each client. As

before, the Cumulus service was located on the service node. All

of the clients were run on the client node. Recall that each

machine has only 512 MB of RAM; this limitation introduces

resource contention conditions.

Figure 4: Comparison of upload and download times for

multiple clients

The results of the study are shown in Figure 4. Each data

point on the graph is the achieved throughput of one of the

clients; the solid lines show the average throughput of all clients.

We see that the achieved bandwidth is stable for downloads: the

largest deviation from the mean is 0.40. The upload case is more

variable, with a maximum deviation from the mean of 1.18 mbps.

The standard deviation is for downloads is 0.18 and for uploads is

0.45. The higher variance of the upload case is due to kernel

caching. In the upload case, all 32 clients opened the same file on

the same host. Inevitably, some clients read portions of the file

before others. The kernel has the ability to cache portions of the

file that early readers read in memory, allowing later readers to

gain performance benefits when reading. Fair sharing as visible to

the client will thus rely not only on the mechanisms implemented

in Cumulus but also on how the service is used.

To evaluate how much overhead is introduced when many

simultaneous clients are consuming resources, we looked at the

total bandwidth consumed by all clients in the fairness study, and

we compared it with the bandwidth consumed by a single client in

the performance study. In the download case, the throughput is

310 mbps for a single client and 210 mbps is the sum total for 32

clients (i.e., overhead of roughly 30%). In the upload case,

however, the throughput for a single client is 269 mbps and for 32

clients is 264 mbps. In this case, the efficiency is likely helped by

the caching effect explained above.

4.3 Scalability

To meet the needs of large-scale storage clouds, Cumulus

must be able to scale horizontally across many nodes. By

leveraging the S3 protocol’s redirect feature, Cumulus can be

configured to run as a set of replicated hosts. In our experiments,

replicated instances of Cumulus were configured in two ways. The

first used the parallel file system GPFS, which allows many hosts

to mount the same file system and thus have the exact same view

of the data store. Hence, Cumulus servers can be placed on all

nodes that have the GPFS file system mounted and be fully

replicated Cumulus servers. Because GPFS is a file system

commonly found on scientific data clusters, configuring Cumulus

in this way is representative of real-world scenarios.

We note, however, that GPFS is a shared resource. How

fairly it shares data streams with competing clients depends on its

implementation details. Further, GPFS uses a network that is also

a shared resource. Because of all these variables, it is important

that we study Cumulus in a less dependent configuration. In our

second configuration, therefore, we have 8 Cumulus servers

associated with local disk partitions. To present the same view of

the data store to all clients, we copied a single data set to all of the

nodes. Thus, every server became a read-only mirror of the entire

dataset. While this is a less realistic configuration, it provides a

baseline for our study.

4.3.1 Increasing Replication Factor

In the first scalability evaluation, we ran an experiment in

which 80 clients, run on 8 machines (10 clients on each),

downloaded a 512 MB file at the same time. In this experiment all

previously described machines, both clients and servers, were

configured with 24 GB of RAM. We steadily increased the

number of replicated servers from 1 to 8, and we used the same

method described previously to measure the throughput that each

client achieved. Redirects were handled with the round-robin

algorithm. The mean of 10 trials was recorded; Figure 5 shows the

results.

Figure 5: Server replication

The solid horizontal line is an extension of the single-server

case and is intended to be a baseline showing what the results

would be if a single server was used. The solid green line

indicates what the performance would be if the single-server case

scaled linearly as new resources joined the pool. The other two

lines show the measured performance of the experiment when

storing to a local disk and to GPFS. In both cases throughput

steadily increases as more servers are added. There is a linear

increase for the first four replicated Cumulus services, but after

that point each additional server has less effect. Ideally, we would

see a linear increase in performance, so that eight servers were 8

times faster than one server. In practice, this is not the case. One

reason is that the HTTP redirect incurs some overhead. A new

connection must be formed to a new Cumulus service at a time of

heavy network contention. The set of clients that were not

redirected at this point are streaming data, and the set of clients

that were redirected are competing with these data flows when

trying to form connections. Another reason is that as each server

is added, the overall bandwidth that the network must be able to

switch is increased by 1 Gbps. We conjecture that as this overall

availability is consumed, stress in lower layers of the network

stack is introduced.

Figure 6: Individual client measurements for server

replication

Figure 6 shows a scatter graph of the achieved throughput of

each client when eight replicated servers are used at once. The

median of all performance is indicated on the graph with the solid

line at 96 Mbps. We see that 80% of the clients are +/- 27 mbps of

the median; a few clients achieve much higher throughput, but

none suffer very poor transfer rates. All the individual

experiments show a consistent pattern: the high-achieving cases

occur when a client contacts a server and is not redirected, so it

can start transferring immediately. Not only do these clients avoid

the penalty of redirection, but for a brief period (before the other

clients are able to connect to their redirected hosts, authenticate,

and begin transferring) they enjoy a noncongested network.

Figure 7: Increasing client load for local disk

Figure 8: Increasing client load for GPFS

4.3.2 Increasing Client Load

The graphs in Figures 7 and 8 show the scalability study

from another angle. Here we have a static number of eight

replicated servers, and we vary the number of clients

simultaneously requesting a transfer from 8 to 80. We again use

eight client machines, and in each data point we add another client

to every machine, increasing the total by 8 for each data point.

The achieved throughput is plotted against the number of clients.

We show the two redirection algorithms and the two file systems.

As more and more clients are added, the available network

bandwidth is divided, giving each client a smaller slice. Thus the

throughput trails off under the heavier load. However, the

replicated service consistently outperforms the single service by a

significant factor. As mentioned above, we would ideally see a

consistent factor of 8. However, as the bar graphs in Figures 9 and

10 show, in the best case we see a factor of roughly 6.5 and in the

worst case a factor of 4. While the redirection overhead does

explain some portion of this discrepancy, it cannot account for all

the discrepancy.

4.3.3 Effects of the File System and Redirection

Algorithm

When studying Figures 7 and 8, we see that with one

exception all the data points have fairly similar lines. The

exception is the first data point for the round-robin line on the

local disk graph (Figure 7), which is greater than 250 mbps

higher. The reason is that the case in question provides ideal

conditions. There are eight servers and eight clients. Since we are

using a local disk, no network contention is introduced by the

storage system. The round-robin algorithm has each client

redirected to a new host, thus providing equal distribution, with

one client associated with one server. The client has the full

resources of a single Cumulus service and can move at NIC

speeds. Further, all the requests start at once, and all request the

same size file, so they all end at roughly the same time.

The Random algorithm does not show such favorable results

because it cannot guarantee that each server gets a new host. Nor

do we see these ideal results when using the GPFS file system

because GPFS itself is a shared resource and it uses the same

network that Cumulus is using for transfers. Because it is a shared

resource, all transfers must use it at the same time and therefore

cannot perform as fast as they can in the local disk case.

Figure 9: Round-robin and Random comparison (local disk)

Figure 10: Round-robin and Random comparison (GPFS)

The Random algorithm with GPFS provides a much more

realistic indicator for what could be expected in a live Cumulus

storage cloud deployment. When comparing GPFS against local

disk, we note that only marginal differences exist between the two

for the Random algorithm. Local disk does significantly

outperform GPFS with the round-robin algorithm, but this is an

unlikely event to occur in a real deployment and should be

considered a best-case scenario.

5. RELATED WORK
The Amazon Web Services S3 is a hosted storage cloud

service. Unlike Cumulus, S3 is closed source, and the software is

not available for private clouds of any size. Thus, one cannot

extend S3 and experiment with its capabilities, as we can do with

Cumulus.

The Eucalyptus project [26] has an S3 compatible service

similar to Cumulus called Walrus. However, the project is open

core, which means that many of its features are not available for

extension and experimentation. For example, although the

enterprise edition does have support for quotas, the open source

version does not. Walrus also does not provide support for

replicated service like that of Cumulus shown in the scalability

study. In contrast, Cumulus is fully open source and specifically

designed with a “use what you have” approach in mind.

Open Stack [27] has a storage cloud component called Swift.

At the time of this study no implementation of Swift was

available. Swift focuses on providing an integrated storage cloud

solution for very large-scale generic clouds, and its architecture

has complexity suitable to the task. Cumulus targets mid-size

clouds and focuses on the “use what you have” approach

leveraging the existing systems developed specifically in the

context of scientific data. Additionally, since Swift does not

provide an S3-compliant interface, users cannot leverage the

debugged and documented tools available for S3 and therefore

cannot fall back to an outsourced storage cloud in times of heavy

load or redundancy needs that surpass their hardware budget.

OpenNebula [28] provides an image store facility for

uploading and downloading VM images. However, it provides

operations only for reading and writing VM images and their

associated metadata. It does not provide a general-purpose storage

cloud as Cumulus does. Further, it does not have an S3-

compatible interface.

GridFTP [29] is a high-speed data transfer service. Its focus

is more on network transfer speeds on underutilized high-speed

networks and less on the storage of data. It allows for parallel

TCP streams to be used, significantly increasing performance but

potentially at the expense of fair sharing. We hope to leverage

lessons learned and techniques used in GridFTP to increase the

performance of Cumulus while still maintaining important

semantics associated with a storage cloud.

6. CONCLUSIONS AND FUTURE WORK
We have presented the design of Cumulus, an extensible,

open source storage cloud implementation designed to adapt

existing storage mechanisms for cloud usage. Cumulus

implements the AWS S3 interface to provide compatibility with

the de facto industry standard. In order to support scientific

projects, however, Cumulus also provides support for additional

features such as quotas—a widely used mechanism to ensure

controlled resource usage in the scientific community. The

customizable back-end allows providers to leverage existing

scientific domain storage systems and thereby choose what trade-

offs—in terms of complexity, reliability, and availability—their

storage cloud should have, ranging from a trivially easy

installation to highly available, reliable service based on HDFS.

We present an evaluation of various aspects of the Cumulus

implementation. We found that the transfer rate of both uploads

and downloads is on a par with technologies commonly used in

science. In our fairness study we found that Cumulus distributes

resources to simultaneous clients in a way consistent with our

service level agreement. Further, our scalability study shows that

Cumulus can take advantage of multiple storage servers to

optimize uploads and downloads and can scale to withstand high

levels of client loads.

Our experiments highlight the potential for further study.

Fundamentally, the concept of a storage cloud is a fusion between

data transfer and storage management: two issues that up to now

were usually considered (and optimized) separately. We plan to

further examining to what extent techniques used in systems such

as GridFTP can be usefully applied to storage clouds and how the

current storage systems can be adapted to receive them.

ACKNOWLEDGEMENTS
This material is based on work supported in part by the

National Science Foundation under Grant No. 0910812 to Indiana

University for "FutureGrid: An Experimental, High-Performance

Grid Test-bed." Partners in the FutureGrid project include U.

Chicago, U. Florida, San Diego Supercomputer Center - UC San

Diego, U. Southern California, U. Texas at Austin, U. Tennessee

at Knoxville, U. of Virginia, Purdue I., and T-U. Dresden. This

work also was supported in part by the Office of Science, U.S.

Department of Energy, under Contract DE-AC02-06CH11357.

REFERENCES
1. Armbrust, M., et al. Above the Clouds: A Berkeley View of

Cloud Computing. Tech. report EUB/EECS-2009-28, University

of California at Berkeley. 2009.

2. Iamnitchi, A., S. Doraimani, and G. Garzoglio. Filecules in

High-Energy Physics: Characteristics and Impact on Resource

Management. In High Performance Distributed Computing

(HPDC). 2006.

3. Ball, N.M., and D. Schade, Astroinformatics in Canada. White

Paper, 2010.

4. Amazon Simple Storage Service (Amazon S3):

http://aws.amazon.com/s3/.

5. Rackspace: http://www.rackspace.com/.

6. Garfinkel, S., An Evaluation of Amazon’s Grid Computing

Services: EC2, S3, and SQS. 2007.

7. Palankar, M., A. Iamnitchi, M. Ripeanu, and S. Garfinkel.

Amazon S3 for Science Grids: A Viable Solution? In

International Workshop on Data-Aware Distributed Computing.

Boston, MA. 2008.

8. Schmuck, F., and R. Haskin. GPFS: A Shared-Disk File System

for Large Computing Clusters. In 1st USENIX Conference on File

and Storage Technologies (FAST ‘02). Berkeley, CA. 2002.

9.Carns, P. H., I. W. Ligon, R. Ross, and R. Thakur. PVFS: A

Parallel File System For Linux Clusters. In 4th Annual Linux

Showcase and Conference. Atlanta, GA. 2000.

10. Shvachko, K., H. Kuang, S. Radia, and R. Chansler. The

Hadoop Distributed File System. In IEEE 26th Symposium on

Mass Storage Systems and Technologies. 2010.

11. The Nimbus Toolkit: www.nimbusproject.org.

12. Keahey, K., I. Foster, T. Freeman, and X. Zhang. Virtual

Workspaces: Achieving Quality of Service and Quality of Life in

the Grid. Scientific Programming 13 (4):265-275. 2005.

13. Freeman, T., and K. Keahey, Flying Low: Simple Leases with

Workspace Pilot. In EuroPar 2008, 2008.

14. Vogels, W., Eventually Consistent. ACM Queue, 2008. 6.

15. Open Cloud Computing Interface (OCCI): http://occi-wg.org/.

16. Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B.

Lyon. Design and Implementation of the Sun Network Filesystem.

In Proceedings of the Summer USENIX Conference. June 1985.

17. Gu, Y., and R. Grossman. Sector and Sphere: the Design and

Implementation of a High Performance Data Cloud. In CCA.

2008.

18. Cassandra: http://cassandra.apache.org/.

19. Twisted Matrix Labs: http://twistedmatrix.com/trac/wiki.

20. SQLite Home page: http://sqlite.org/.

21. PostgreSQL: http://www.postgresql.org/.

22. FUSE: Filesystem in Userspace: http://fuse.sourceforge.net/.

23. FutureGrid: www.futuregrid.org.

24. Allcock, W., GridFTP: Protocol Extensions to FTP for the

Grid. In Global Grid Forum. 2003.

25. Bonnie Disk I/O Benchmark:

http://www.textuality.com/bonnie/.

26. Nurmi, D., R. Wolski, C. Grzegorczyk, G. Obertelli, S.

Soman, L. Youseff, and D. Zagorodnov. The Eucalyptus Open-

Source Cloud-Computing System. In CCGrid. 2008.

27. OpenStack: The open source, open standards cloud:

http://openstack.org/.

28. The OpenNebula Project: http://www.opennebula.org/.

29. Allcock, W., J. Bresnahan, R. Kettimuthu, M. Link, C.

Dumitrescu, I. Raicu, and I. Foster. The Globus Striped GridFTP

Framework and Server. In SC ‘05. 2005.

30. s3cmd : command line S3 client: http://s3tools.org/s3cmd.

31. boto: Python interface to Amazon Web Services:

http://code.google.com/p/boto/.

32. jets3t: An open source Java toolkit for Amazon S3 and

CloudFront: http://jets3t.s3.amazonaws.com/.

33. Bogdan Nicolae. High Throughput Data-Compression for

Cloud Storage. Pages 1-12 in Proceedings of the Third

International Conference on Data Management in Grid and Peer-

to-Peer Systems (Globe’10). Abdelkader Hameurlain, Franck

Morvan, and A. Min Tjoa (eds.). Springer-Verlag, Berlin. 2010.

The submitted manuscript has been created by UChicago

Argonne, LLC, Operator of Argonne National Laboratory

("Argonne"). Argonne, a U.S. Department of Energy Office of

Science laboratory, is operated under Contract No. DE-AC02-

06CH11357. The U.S. Government retains for itself, and others

acting on its behalf, a paid-up nonexclusive, irrevocable

worldwide license in said article to reproduce, prepare derivative

works, distribute copies to the public, and perform publicly and

display publicly, by or on behalf of the Government.

