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ABSTRACT 

Amazon’s S3 protocol has emerged as the de facto interface for 

storage in the commercial data cloud. However, it is closed source 

and unavailable to the numerous science data centers all over the 

country. Just as Amazon’s Simple Storage Service (S3) provides 

reliable data cloud access to commercial users, scientific data 

centers must provide their users with a similar level of service. 

Ideally scientific data centers could allow the use of the same 

clients and protocols that have proven effective to Amazon’s 

users. But how well does the S3 REST interface compare with the 

data cloud transfer services used in today’s computational 

centers? Does it have the features needed to support the scientific 

community? If not, can it be extended to include these features 

without loss of compatibility? Can it scale and distribute resources 

equally when presented with common scientific the usage 

patterns? 

We address these questions by presenting Cumulus, an open 

source implementation of the Amazon S3 REST API. It is 

packaged with the Nimbus IaaS toolkit and provides scalable and 

reliable access to scientific data. Its performance compares 

favorably with that of GridFTP and SCP, and we have added 

features necessary to support the econometrics important to the 

scientific community. 
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1. INTRODUCTION 
Storage clouds represent a fusion between data transfer and 

storage; two actions that up to now were usually considered and 

optimized separately. The emergence of storage clouds as a useful 

model raises several questions. To what extent can the existing 

scientific storage systems be adapted to fit this model? Are 

existing file/storage management tools suitable for cloud 

computing? Can we build a storage cloud using a combination of 

existing tools? How will such a combination need to be adapted to 

satisfy the expectations of scientific users? What are the 

performance characteristics of such adaptations, and how can they 

be improved? Answering these questions provides a path to better 

leverage the existing knowledge and experience in building 

storage clouds.  

Outsourcing compute and storage infrastructure has many 

potential benefits. It can provide access to more sophisticated 

resources than the outsourcing institution can afford to own and 

operate, it supports more flexible use of such resources, it creates 

the potential for leveraging economies of scale via consolidation, 

and it eliminates the overhead of system acquisition and 

operation. Many outsourcing models have been tried, from multi-

institutional sharing to grid computing and commercial hosting 

services. Recently, cloud computing [1] emerged as a new 

outsourcing paradigm that quickly became successful in many 

commercial venues. Infrastructure as a Service (IaaS) is the most 

flexible of the mechanisms collectively known as cloud 

computing; it offers scientists access to computational and storage 

resources on a on-demand, pay-as-you-go basis.  

Storage outsourcing is of particular importance to scientific 

research, where volumes of data produced by one community can 

reach the scale of terabytes per day [2, 3]. Sharing and processing 

of such data require careful planning and trade-off considerations 

that could be greatly facilitated by storage on-demand services 

such as those provided by Amazon Simple Storage Service (S3) 

[4] or Rackspace [5]. For this reason, the study of such services 

from the perspective of scientific needs attracted early attention 

[6, 7]. The commercially offered services are closed, however, 

and thus can be only partially studied. Deep evaluation of the 

potential of cloud computing as an outsourcing model requires the 

ability to experiment with the paradigm.  

In this paper, we present Cumulus—a storage cloud system 

that adapts existing storage implementations to provide efficient 

upload/download interfaces compatible with S3, the de facto 

industry standard. While this compatibility enables users to easily 

move between academic and commercial clouds, Cumulus also 

conforms to scientific community expectations by providing such 

features as quota support, fair sharing among clients, and an easy-

to-use, easy-to-install approach for maintenance. The most 

important feature of Cumulus is its well-articulated back-end 

extensibility module. It allows storage providers to configure 

Cumulus with existing systems such as GPFS [8], PVFS [9], and 

HDFS [10], in order to provide the desired reliability, availability 

or performance trade-offs. Cumulus is part of the open source 

Nimbus toolkit [11, 12], where this “use what you have” approach 

has also been successfully used to provide a compute cloud 

service that can be used with batch schedulers [13].  

We first describe Cumulus architecture and implementation. 

We next evaluate Cumulus from the perspective of 

upload/download efficiency and compare it with representative 

tools used in the scientific community. We then demonstrate how 

Cumulus scales over multiple storage servers, and we evaluate the 

efficiency of such scaling in the context of the GPFS storage 

system used on many scientific clusters.  



2. CUMULUS DESIGN 
Cumulus provides two functions. First, it allows users to 

accumulate and manage data: upload data to the cloud, monitor its 

status, and download it from the storage cloud as needed. Second, 

since this data can in particular represent VM images, Cumulus 

also provides an image store for Nimbus compute clouds. Users 

can use client tools—provided either by Amazon for interaction 

with S3 or by other third-party tool providers—to access those 

functions. Since Cumulus is integrated with the Nimbus 

workspace service, the users can also access Cumulus functions 

through the Nimbus cloud-client features to upload and download 

images.  

 
Figure 1: Cumulus architecture 

The architecture of Cumulus, shown in Figure 1, is simple 

and modular, with particular care taken to provide extensibility 

options at various design levels. The Cumulus Interfaces layer 

exposes the interface to the service and contains modules 

interpreting and authorizing client commands. The current 

implementation supports only Amazon’s S3 REST protocol, the 

de facto commercial standard storage cloud interface. Thus, many 

client libraries and tools, including s3cmd [30], boto [31], and 

jets3t [32], can be leveraged by Cumulus users. Simply put, the 

S3 interface allows clients to write, read, and delete objects 

(equivalent of files) or organize them into buckets (equivalent of 

directories). Furthermore, Cumulus interfaces support 

simultaneous upload to a single object without the risk of data 

corruption; and, like S3, it supports the notion of eventual 

consistency [14]. 

Authentication mechanisms, based on request signature by 

symmetric key, are provided to ensure that data is kept secure. 

When a request is made to the service, the authorization database 

is checked to verify that the user is known and is allowed to 

perform the requested action on the specified bucket and object. 

Object permissions are set with an access control list (ACL), 

which allows a group of users to share data with a rich set of 

controls according to the S3 protocol [4]. For example, a user can 

grant read access to one user and write access to another without 

having to worry about defining user groups. The authorization 

module handles this functionality without exposing the remainder 

of the body of code to these details. This allows for different 

authorization implementations to be created and enabled. 

The Cumulus Redirection module is used to handle 

scalability. This portion of Cumulus keeps track of the workload 

of the service and decides to either accept a new client connection 

or redirect that client to a replicated server. 

The Cumulus Service Implementation encompasses a set of 

modules that implement the functionality needed to convert an 

API request into an action on the storage system and record all 

important events along the way. When a user requests that a 

bucket be created, this component logs the request, checks that the 

request is allowed against quota and ACL restrictions, and then 

invokes the appropriate method on the Storage API.  Cumulus 

configuration files are interpreted and respected in this module. 

Along with this component is a set of command-line tools that 

allow a user easily to create new users, alter and delete existing 

users, and manage the users storage quotas. 

The Cumulus Storage API is a modular system that allows 

administrators to choose what backend storage system they wish 

to use. It abstracts the details of sourcing and sinking data from 

the rest of Cumulus via the various Implementations—Cumulus 

plug-in modules. Similarly, these plug-ins need not be concerned 

with the details of security, HTTP, or S3. This design allows for 

fairly easy creation of a storage module and thus integration with 

most storage system, whether they are simple like local file 

systems or sophisticated like HDFS. This modular approach to 

storage system is a key design feature of Cumulus.  

Creating a storage module involves the implementation of 

two abstract classes. The first is a file management class with 

interface operations for actions such as the creation or deletion of 

a bucket or the uploading, downloading, or deleting of an object. 

The second class is responsible for streaming the data to the 

storage object. This class behaves similarly to an open file. The 

creation of a storage module is expected to be a moderately easy 

task involving about two to three hundred lines of python code. 

In order to achieve Amazon levels or availability, vast 

amounts of hardware expenses need to be incurred. Some users 

may need such levels, but others have more modest requirements. 

Some storage clouds have the resources simply for a single node; 

for these, a local disk is all that is needed to back their system, 

without having to deal with complicated setups. Other storage 

clouds have a cluster of nodes to back their storage system; such 

setups typically have shared or parallel file systems like GPFS [8], 

PVFS [9], or NFS [16] and can use them to back their Cumulus 

storage cloud. More sophisticated clouds may have highly 

available data stores like HDFS [10], Sector [17], or Cassandra 

[18] to back their systems. Our goal is to enable all those different 

types of storage to be used in the creation of clouds.  

3. IMPLEMENTATION 
Cumulus is implemented in the python programming 

language as a REST service. Twisted Web [19] is used to handle 

the marshaling of the HTTP and HTTPS protocols The Cumulus 

service implementation handles interpreting the REST API and 

converting it to the Cumulus API. The Cumulus API is a set of 

python objects that are responsible for handling specific user 

requests.  

The Cumulus default authorization module is implemented 

with the database sqlite [20]. Because sqlite is often limited to a 

local file system (the details here depend on the use of a shared 

file system that safely supports locking), this module cannot be 

used in a replicated configuration. However, a slightly modified 

version of this module exists that uses postgres [21]; this allows 



Cumulus to be configured as a replicated and scalable service. An 

additional light-weight module has been created that uses simple 

text files for managing access to security information.  

The Cumulus package released by the Nimbus project 

includes the POSIX data storage module. Because of the success 

of FUSE [22], this module is powerful and allows for immediate 

integration with HDFS, SECTOR, and many other file systems. 

Additionally we have a BlobSeer [33] module that is a research 

extension. 

Many Cumulus servers can be configured to run on separate 

machines all accessing a shared data store such as GPFS. This 

replicated pool of Cumulus servers can then be used to handle a 

higher client load. The replication module decides whether a 

redirection is needed and, if so, to which replicated server the 

client will be redirected. The current release of Cumulus has two 

redirection modules (both used in our experiments): random and 

round robin. In both modules a list of all replicated servers is 

stored in a file (the contents of this file can change without 

needing to restart the Cumulus servers). Each service is given this 

file and an integer known as the redirection point. The modules 

keep track of the total number of current client connections. If that 

number exceeds the redirection point, a new host is chosen from 

the list.  

The modules differ in how they choose a new host. The 

random module selects a new host from the list at random. The 

round-robin module iterates through the list, selecting a new host 

every time and starting over at the beginning once the list is 

exhausted. Both algorithms include the current host in their 

redirection candidates. If the current host is selected, the request is 

handled without redirection. 

4. EXPERIMENTS 
To assess the viability of Cumulus as a storage cloud for 

science, we ran a set of experiments on the FutureGrid’s Hotel 

resource [23]. The compute nodes used in the study were 8-core 4 

Xeon 2.40 GHz processors equipped with 24 GB of RAM and 1 

Gbps network interfaces (including the c1.uc.futuregrid.org and 

c2.uc.futuregrid.org nodes we refer to below), connected via a 

Juniper EX4200 network switch. At the time the fair sharing and 

performance experiments were run, the nodes were configured to 

use just 512 MB of memory in order to create resource contention 

conditions. For the remaining experiments we used the full 24 GB 

of RAM.  

In our experiments we refer to the “client node” 

(c1.uc.futuregrid.org) host and the “service node” 

(c2.uc.futuregrid). In our scalability study we had a total of 20 

nodes at our disposal for the experiment. In this case all nodes 

were identically configured as those described above with the 

exception that they had the full 24 GB of RAM. 

4.1 Performance 

To evaluate the performance of Cumulus, we ran a series of 

experiments comparing it with the two most commonly used data 

transfer services in the scientific community: GridFTP [24] and 

SCP. GridFTP has set the standard for data transfer performance, 

and SCP is the ubiquitous transfer service that users turn to when 

they want a simple and immediate solution. 

Our experiments compared the throughput obtained by all 

three tools in uploading and downloading a file. We used the 

following standard command-line interface tools to perform the 

transfer with their respective service: for GridFTP we used 

globus-url-copy; for SCP, the scp command; for Cumulus, the 

s3cmd. The speed of the file system was measured by using 

Bonnie++ [25]. The throughput was calculated by dividing the 

file size by the time each command took to complete. 

Typically, data transfer services perform best on files of a 

significant size, because small files have a low payload-to-

overhead ratio. The optimal file size for any given transfer service 

varies slightly depending on details of the protocol and 

implementation. Hence, we chose to show the results starting with 

a small file and gradually increasing the file size, allowing us to 

see the relative trends.  Specifically, in our experiments we 

measured the time all three services took to both upload and 

download a range of file sizes from 2 MB to 2 GB , doubling the 

file size for each new measurement. We took 10 measurements for 

each file size; our results display the mean of 10 trials (with 

standard deviation less than 1 for most measurements). 

 

Figure 2: Comparison of upload throughput 

 

Figure 3: Comparison of download throughput 

The results in Figures 2 and 3 show that the performance of 

Cumulus is on a par with the most common and best-performing 

data transfer services in use today. GridFTP and Cumulus display 

similar performance characteristics; in fact, Cumulus slightly 

outperforms GridFTP for file sizes larger than 512 MB. The spike 

in GridFTP performance just before the 512 MB file size (visible 

particularly in Figure 2) is an artifact of GridFTP memory 

buffering techniques. We plan to investigate whether applying 

similar buffering strategies would be useful in Cumulus without 

breaking its storage semantics. 



4.2 Fair Sharing 

The fair sharing experiment evaluates to what extent we meet 

our goal to equally ration resources to clients. In the study we 

operated a single Cumulus service instance and had 32 clients 

simultaneously upload or download a single 512 MB file; we 

measured the upload and download time for each client. As 

before, the Cumulus service was located on the service node. All 

of the clients were run on the client node. Recall that each 

machine has only 512 MB of RAM; this limitation introduces 

resource contention conditions. 

 

Figure 4: Comparison of upload and download times for 

multiple clients 

The results of the study are shown in Figure 4. Each data 

point on the graph is the achieved throughput of one of the 

clients; the solid lines show the average throughput of all clients. 

We see that the achieved bandwidth is stable for downloads: the 

largest deviation from the mean is 0.40. The upload case is more 

variable, with a maximum deviation from the mean of 1.18 mbps. 

The standard deviation is for downloads is 0.18 and for uploads is 

0.45. The higher variance of the upload case is due to kernel 

caching. In the upload case, all 32 clients opened the same file on 

the same host. Inevitably, some clients read portions of the file 

before others. The kernel has the ability to cache portions of the 

file that early readers read in memory, allowing later readers to 

gain performance benefits when reading. Fair sharing as visible to 

the client will thus rely not only on the mechanisms implemented 

in Cumulus but also on how the service is used. 

To evaluate how much overhead is introduced when many 

simultaneous clients are consuming resources, we looked at the 

total bandwidth consumed by all clients in the fairness study, and 

we compared it with the bandwidth consumed by a single client in 

the performance study. In the download case, the throughput is 

310 mbps for a single client and 210 mbps is the sum total for 32 

clients (i.e., overhead of roughly 30%). In the upload case, 

however, the throughput for a single client is 269 mbps and for 32 

clients is 264 mbps. In this case, the efficiency is likely helped by 

the caching effect explained above. 

4.3 Scalability 

To meet the needs of large-scale storage clouds, Cumulus 

must be able to scale horizontally across many nodes. By 

leveraging the S3 protocol’s redirect feature, Cumulus can be 

configured to run as a set of replicated hosts. In our experiments, 

replicated instances of Cumulus were configured in two ways. The 

first used the parallel file system GPFS, which allows many hosts 

to mount the same file system and thus have the exact same view 

of the data store. Hence, Cumulus servers can be placed on all 

nodes that have the GPFS file system mounted and be fully 

replicated Cumulus servers. Because GPFS is a file system 

commonly found on scientific data clusters, configuring Cumulus 

in this way is representative of real-world scenarios. 

We note, however, that GPFS is a shared resource. How 

fairly it shares data streams with competing clients depends on its 

implementation details. Further, GPFS uses a network that is also 

a shared resource. Because of all these variables, it is important 

that we study Cumulus in a less dependent configuration. In our 

second configuration, therefore, we have 8 Cumulus servers 

associated with local disk partitions. To present the same view of 

the data store to all clients, we copied a single data set to all of the 

nodes. Thus, every server became a read-only mirror of the entire 

dataset. While this is a less realistic configuration, it provides a 

baseline for our study. 

4.3.1 Increasing Replication Factor 

In the first scalability evaluation, we ran an experiment in 

which 80 clients, run on 8 machines (10 clients on each), 

downloaded a 512 MB file at the same time. In this experiment all 

previously described machines, both clients and servers, were 

configured with 24 GB of RAM. We steadily increased the 

number of replicated servers from 1 to 8, and we used the same 

method described previously to measure the throughput that each 

client achieved. Redirects were handled with the round-robin 

algorithm. The mean of 10 trials was recorded; Figure 5 shows the 

results.  

 

Figure 5: Server replication 

The solid horizontal line is an extension of the single-server 

case and is intended to be a baseline showing what the results 

would be if a single server was used. The solid green line 

indicates what the performance would be if the single-server case 

scaled linearly as new resources joined the pool. The other two 

lines show the measured performance of the experiment when 

storing to a local disk and to GPFS. In both cases throughput 

steadily increases as more servers are added. There is a linear 

increase for the first four replicated Cumulus services, but after 

that point each additional server has less effect. Ideally, we would 

see a linear increase in performance, so that eight servers were 8 

times faster than one server. In practice, this is not the case. One 

reason is that the HTTP redirect incurs some overhead. A new 

connection must be formed to a new Cumulus service at a time of 

heavy network contention. The set of clients that were not 

redirected at this point are streaming data, and the set of clients 

that were redirected are competing with these data flows when 



trying to form connections. Another reason is that as each server 

is added, the overall bandwidth that the network must be able to 

switch is increased by 1 Gbps. We conjecture that as this overall 

availability is consumed, stress in lower layers of the network 

stack is introduced. 

 

Figure 6: Individual client measurements for server 

replication 

Figure 6 shows a scatter graph of the achieved throughput of 

each client when eight replicated servers are used at once. The 

median of all performance is indicated on the graph with the solid 

line at 96 Mbps. We see that 80% of the clients are +/- 27 mbps of 

the median; a few clients achieve much higher throughput, but 

none suffer very poor transfer rates. All the individual 

experiments show a consistent pattern: the high-achieving cases 

occur when a client contacts a server and is not redirected, so it 

can start transferring immediately. Not only do these clients avoid 

the penalty of redirection, but for a brief period (before the other 

clients are able to connect to their redirected hosts, authenticate, 

and begin transferring) they enjoy a noncongested network. 

  
Figure 7: Increasing client load for local disk  

 

 

 

Figure 8: Increasing client load for GPFS 

4.3.2 Increasing Client Load 

The graphs in Figures 7 and 8 show the scalability study 

from another angle. Here we have a static number of eight 

replicated servers, and we vary the number of clients 

simultaneously requesting a transfer from 8 to 80. We again use 

eight client machines, and in each data point we add another client 

to every machine, increasing the total by 8 for each data point. 

The achieved throughput is plotted against the number of clients. 

We show the two redirection algorithms and the two file systems. 

As more and more clients are added, the available network 

bandwidth is divided, giving each client a smaller slice. Thus the 

throughput trails off under the heavier load. However, the 

replicated service consistently outperforms the single service by a 

significant factor. As mentioned above, we would ideally see a 

consistent factor of 8. However, as the bar graphs in Figures 9 and 

10 show, in the best case we see a factor of roughly 6.5 and in the 

worst case a factor of 4. While the redirection overhead does 

explain some portion of this discrepancy, it cannot account for all 

the discrepancy.  

 

4.3.3 Effects of the File System and Redirection 

Algorithm 

When studying Figures 7 and 8, we see that with one 

exception all the data points have fairly similar lines. The 

exception is the first data point for the round-robin line on the 

local disk graph (Figure 7), which is greater than 250 mbps 

higher. The reason is that the case in question provides ideal 

conditions. There are eight servers and eight clients. Since we are 

using a local disk, no network contention is introduced by the 

storage system. The round-robin algorithm has each client 

redirected to a new host, thus providing equal distribution, with 

one client associated with one server. The client has the full 

resources of a single Cumulus service and can move at NIC 

speeds. Further, all the requests start at once, and all request the 

same size file, so they all end at roughly the same time.  

The Random algorithm does not show such favorable results 

because it cannot guarantee that each server gets a new host. Nor 

do we see these ideal results when using the GPFS file system 

because GPFS itself is a shared resource and it uses the same 

network that Cumulus is using for transfers. Because it is a shared 

resource, all transfers must use it at the same time and therefore 



cannot perform as fast as they can in the local disk case. 

 
Figure 9: Round-robin and Random comparison (local disk) 

 

Figure 10: Round-robin and Random comparison (GPFS) 

The Random algorithm with GPFS provides a much more 

realistic indicator for what could be expected in a live Cumulus 

storage cloud deployment. When comparing GPFS against local 

disk, we note that only marginal differences exist between the two 

for the Random algorithm. Local disk does significantly 

outperform GPFS with the round-robin algorithm, but this is an 

unlikely event to occur in a real deployment and should be 

considered a best-case scenario. 

5. RELATED WORK 
The Amazon Web Services S3 is a hosted storage cloud 

service. Unlike Cumulus, S3 is closed source, and the software is 

not available for private clouds of any size. Thus, one cannot 

extend S3 and experiment with its capabilities, as we can do with 

Cumulus. 

The Eucalyptus project [26] has an S3 compatible service 

similar to Cumulus called Walrus. However, the project is open 

core, which means that many of its features are not available for 

extension and experimentation. For example, although the 

enterprise edition does have support for quotas, the open source 

version does not. Walrus also does not provide support for 

replicated service like that of Cumulus shown in the scalability 

study. In contrast, Cumulus is fully open source and specifically 

designed with a “use what you have” approach in mind.  

Open Stack [27] has a storage cloud component called Swift. 

At the time of this study no implementation of Swift was 

available. Swift focuses on providing an integrated storage cloud 

solution for very large-scale generic clouds, and its architecture 

has complexity suitable to the task. Cumulus targets mid-size 

clouds and focuses on the “use what you have” approach 

leveraging the existing systems developed specifically in the 

context of scientific data. Additionally, since Swift does not 

provide an S3-compliant interface, users cannot leverage the 

debugged and documented tools available for S3 and therefore 

cannot fall back to an outsourced storage cloud in times of heavy 

load or redundancy needs that surpass their hardware budget.  

OpenNebula [28] provides an image store facility for 

uploading and downloading VM images. However, it provides 

operations only for reading and writing VM images and their 

associated metadata. It does not provide a general-purpose storage 

cloud as Cumulus does. Further, it does not have an S3-

compatible interface. 

GridFTP [29] is a high-speed data transfer service. Its focus 

is more on network transfer speeds on underutilized high-speed 

networks and less on the storage of data. It allows for parallel 

TCP streams to be used, significantly increasing performance but 

potentially at the expense of fair sharing. We hope to leverage 

lessons learned and techniques used in GridFTP to increase the 

performance of Cumulus while still maintaining important 

semantics associated with a storage cloud. 

6. CONCLUSIONS AND FUTURE WORK 
We have presented the design of Cumulus, an extensible, 

open source storage cloud implementation designed to adapt 

existing storage mechanisms for cloud usage. Cumulus 

implements the AWS S3 interface to provide compatibility with 

the de facto industry standard. In order to support scientific 

projects, however, Cumulus also provides support for additional 

features such as quotas—a widely used mechanism to ensure 

controlled resource usage in the scientific community. The 

customizable back-end allows providers to leverage existing 

scientific domain storage systems and thereby choose what trade-

offs—in terms of complexity, reliability, and availability—their 

storage cloud should have, ranging from a trivially easy 

installation to highly available, reliable service based on HDFS. 

We present an evaluation of various aspects of the Cumulus 

implementation. We found that the transfer rate of both uploads 

and downloads is on a par with technologies commonly used in 

science. In our fairness study we found that Cumulus distributes 

resources to simultaneous clients in a way consistent with our 

service level agreement. Further, our scalability study shows that 

Cumulus can take advantage of multiple storage servers to 

optimize uploads and downloads and can scale to withstand high 

levels of client loads.  

Our experiments highlight the potential for further study. 

Fundamentally, the concept of a storage cloud is a fusion between 

data transfer and storage management: two issues that up to now 

were usually considered (and optimized) separately. We plan to 

further examining to what extent techniques used in systems such 

as GridFTP can be usefully applied to storage clouds and how the 

current storage systems can be adapted to receive them.  

ACKNOWLEDGEMENTS 
This material is based on work supported in part by the 

National Science Foundation under Grant No. 0910812 to Indiana 

University for "FutureGrid: An Experimental, High-Performance 

Grid Test-bed." Partners in the FutureGrid project include U. 

Chicago, U. Florida, San Diego Supercomputer Center - UC San 

Diego, U. Southern California, U. Texas at Austin, U. Tennessee 

at Knoxville, U. of Virginia, Purdue I., and T-U. Dresden. This 

work also was supported in part by the Office of Science, U.S. 

Department of Energy, under Contract DE-AC02-06CH11357. 

 



REFERENCES 
1. Armbrust, M., et al. Above the Clouds: A Berkeley View of 

Cloud Computing. Tech. report EUB/EECS-2009-28, University 

of California at Berkeley. 2009. 

2. Iamnitchi, A., S. Doraimani, and G. Garzoglio. Filecules in 

High-Energy Physics: Characteristics and Impact on Resource 

Management. In High Performance Distributed Computing 

(HPDC). 2006. 

3. Ball, N.M., and D. Schade, Astroinformatics in Canada. White 

Paper, 2010. 

4. Amazon Simple Storage Service (Amazon S3): 

http://aws.amazon.com/s3/. 

5. Rackspace: http://www.rackspace.com/. 

6. Garfinkel, S., An Evaluation of Amazon’s Grid Computing 

Services: EC2, S3, and SQS. 2007. 

7. Palankar, M., A. Iamnitchi, M. Ripeanu, and S. Garfinkel. 

Amazon S3 for Science Grids: A Viable Solution? In 

International Workshop on Data-Aware Distributed Computing. 

Boston, MA. 2008. 

8. Schmuck, F., and R. Haskin. GPFS: A Shared-Disk File System 

for Large Computing Clusters. In 1st USENIX Conference on File 

and Storage Technologies (FAST ‘02). Berkeley, CA. 2002. 

9.Carns, P. H., I. W. Ligon, R. Ross, and R. Thakur. PVFS: A 

Parallel File System For Linux Clusters. In 4th Annual Linux 

Showcase and Conference. Atlanta, GA. 2000. 

10. Shvachko, K., H. Kuang, S. Radia, and R. Chansler. The 

Hadoop Distributed File System. In IEEE 26th Symposium on 

Mass Storage Systems and Technologies. 2010. 

11. The Nimbus Toolkit: www.nimbusproject.org. 

12. Keahey, K., I. Foster, T. Freeman, and X. Zhang. Virtual 

Workspaces: Achieving Quality of Service and Quality of Life in 

the Grid. Scientific Programming 13 (4):265-275. 2005. 

13. Freeman, T., and K. Keahey, Flying Low: Simple Leases with 

Workspace Pilot. In EuroPar 2008, 2008. 

14. Vogels, W., Eventually Consistent. ACM Queue, 2008. 6. 

15. Open Cloud Computing Interface (OCCI): http://occi-wg.org/. 

16. Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B. 

Lyon. Design and Implementation of the Sun Network Filesystem. 

In Proceedings of the Summer USENIX Conference. June 1985. 

17. Gu, Y., and R. Grossman. Sector and Sphere: the Design and 

Implementation of a High Performance Data Cloud. In CCA. 

2008. 

18. Cassandra: http://cassandra.apache.org/. 

19. Twisted Matrix Labs: http://twistedmatrix.com/trac/wiki. 

20. SQLite Home page: http://sqlite.org/. 

21. PostgreSQL: http://www.postgresql.org/. 

22. FUSE: Filesystem in Userspace: http://fuse.sourceforge.net/. 

23. FutureGrid: www.futuregrid.org. 

24. Allcock, W., GridFTP: Protocol Extensions to FTP for the 

Grid. In Global Grid Forum. 2003. 

25. Bonnie Disk I/O Benchmark: 

http://www.textuality.com/bonnie/. 

26. Nurmi, D., R. Wolski, C. Grzegorczyk, G. Obertelli, S. 

Soman, L. Youseff, and D. Zagorodnov. The Eucalyptus Open-

Source Cloud-Computing System. In CCGrid. 2008. 

27. OpenStack: The open source, open standards cloud: 

http://openstack.org/. 

28. The OpenNebula Project: http://www.opennebula.org/. 

29. Allcock, W., J. Bresnahan, R. Kettimuthu, M. Link, C. 

Dumitrescu, I. Raicu, and I. Foster. The Globus Striped GridFTP 

Framework and Server. In SC ‘05. 2005. 

30. s3cmd : command line S3 client: http://s3tools.org/s3cmd. 

31. boto: Python interface to Amazon Web Services: 

http://code.google.com/p/boto/. 

32. jets3t: An open source Java toolkit for Amazon S3 and 

CloudFront: http://jets3t.s3.amazonaws.com/. 

33. Bogdan Nicolae. High Throughput Data-Compression for 

Cloud Storage. Pages 1-12 in Proceedings of the Third 

International Conference on Data Management in Grid and Peer-

to-Peer Systems (Globe’10). Abdelkader Hameurlain, Franck 

Morvan, and A. Min Tjoa (eds.). Springer-Verlag, Berlin. 2010. 

 

The submitted manuscript has been created by UChicago 

Argonne, LLC, Operator of Argonne National Laboratory 

("Argonne"). Argonne, a U.S. Department of Energy Office of 

Science laboratory, is operated under Contract No. DE-AC02-

06CH11357. The U.S. Government retains for itself, and others 

acting on its behalf, a paid-up nonexclusive, irrevocable 

worldwide license in said article to reproduce, prepare derivative 

works, distribute copies to the public, and perform publicly and 

display publicly, by or on behalf of the Government. 

 

 

 


